斜三棱柱ABC—A1B1C1中,AA1=AC=BC=2,
,且平面ACC1A1⊥平面BCC1B1,則A1B的長(zhǎng)度為         。m]
考查三棱柱的性質(zhì)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(13分)如圖(2):PA⊥面ABCD,CD2AB,
∠DAB=90°,E為PC的中點(diǎn).
(1)證明:BE//面PAD;
(2)若PA=AD,證明:BE⊥面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
如圖,三棱錐中,,
(Ⅰ)求證:平面
(Ⅱ)若為線段上的點(diǎn),設(shè),問為何值時(shí)能使
直線平面
(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)如圖所示,已知三棱柱ABC-的底面邊長(zhǎng)均為2,側(cè)棱的長(zhǎng)為2且與底面ABC所成角為,且側(cè)面垂直于底面ABC.
(1)求二面角的正切值的大;
  (2)若其余條件不變,只改變側(cè)棱的長(zhǎng)度,當(dāng)側(cè)棱的長(zhǎng)度為多長(zhǎng)時(shí),可使面 和底面垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分,第Ⅰ小題4分,第Ⅱ小題5分,第Ⅲ小題3分)
如圖,是直角梯形,∠=90°,=1,=2,又=1,∠=120°,,直線與直線所成的角為60°.
(Ⅰ)求證:平面⊥平面;
(Ⅱ)求二面角的大小;
(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱臺(tái)ABCD—A1B1C1D1中,下底ABCD是邊長(zhǎng)為2的正方形,上底A1B1C1D1是邊長(zhǎng)為1的正方形,側(cè)棱DD1⊥平面ABCD,DD1=2.
(1)求證:B1B//平面D1AC;
(2)求二面角B1—AD1—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)

如圖,P—ABCD是正四棱錐,是正方體,其中 
(1)求證:;
(2)求PA與平面所成角的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

平面六面體中,既與共面也與共面的棱的條數(shù)為  (   )
A.3B.4 C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將棱長(zhǎng)為3的正四面體的各棱長(zhǎng)三等分,經(jīng)過(guò)分點(diǎn)將原正四面體各頂點(diǎn)附近均截去  一個(gè)棱長(zhǎng)為1的小正四面體,則剩下的多面體的棱數(shù)E為    (    )
A.16B.17 C.18 D.19

查看答案和解析>>

同步練習(xí)冊(cè)答案