如圖,直線AB為圓O的切線,切點為B,點C在圓上,∠ABC的角平分線BE交圓于點E,DB垂直BE交圓于點D.

(1)證明:DB=DC;
(2)設圓的半徑為1,BC=,延長CE交AB于點F,求△BCF外接圓的半徑.

(1)見解析   (2)

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,AB和BC分別與圓O相切于點D、C,AC經(jīng)過圓心O,且BC=2OC.求證:AC=2AD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是⊙的直徑, 是⊙的切線,的延長線交于點,為切點.若,的平分線和⊙分別交于點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,AB是⊙O的直徑,BE為⊙O的切線,點C為⊙O上不同于A,B的一點,AD為∠BAC的平分線,且分別與BC交于H,與⊙O交于D,與BE交于E,連接BD,CD.
 
(1)求證:BD平分∠CBE;
(2)求證:AH·BHAE·HC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,圓內(nèi)的兩條弦AB、CD相交于圓內(nèi)一點P,已知PA=PB=4,PC=PD.求CD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,AB∥CD,OD2=OB·OE.

求證:AD∥CE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,在△ABC中,I為△ABC的內(nèi)心,AI交BC于D,交△ABC外接圓于E.

求證:(1)IE=EC;
(2)IE2=ED·EA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,D為△ABC中BC邊上的一點,∠CAD=∠B,若AD=6,AB=10,BD=8,求CD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在正△ABC中,點D,E分別在邊AC, AB上,且AD=ACAE=AB,BD,CE相交于點F.

(Ⅰ)求證:A,E,F, D四點共圓;
(Ⅱ)若正△ABC的邊長為2,求A,E,F,D所在圓的半徑.

查看答案和解析>>

同步練習冊答案