已知雙曲線的右頂點為A,右焦點為F,右準線與軸交于點B,且與一條漸近線交于點C,點O為坐標(biāo)原點,,,過點F的直線與雙曲線右支交于點

(Ⅰ)求此雙曲線的方程;

(Ⅱ)求面積的最小值.

 

【答案】

(Ⅰ)(Ⅱ)18.  

【解析】

試題分析:(Ⅰ)由題設(shè),,,設(shè)雙曲線的一條漸近線方程為:,與右準線的交點,則,∴,

所求雙曲線的方程是

(Ⅱ)由(Ⅰ)得:,,設(shè)直線的方程為,

,設(shè),則

,且

,令,∴

,而上為減函數(shù),∴當(dāng)有最大值1,面積的最小值為18.  

考點:本題考查了雙曲線的方程及直線雙曲線的位置關(guān)系

點評:對于直線與圓錐曲線的綜合問題,往往要聯(lián)立方程,同時結(jié)合一元二次方程根與系數(shù)的關(guān)系進行求解;而對于最值問題,則可將該表達式用直線斜率k表示,然后根據(jù)題意將其進行化簡結(jié)合表達式的形式選取最值的計算方式

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的右頂點為E,雙曲線的左準線與該雙曲線的兩漸近線的交點分別為A、B兩點,若∠AEB=60°,則該雙曲線的離心率e是( )

         A.            B.2         C.或2         D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的右頂點為E,雙曲線的左準線與該雙曲線的兩漸近線的交點分別為A、B兩點,若∠AEB=60°,則該雙曲線的離心率e是( )

       A.          B.2        C.或2         D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省高三2月調(diào)研考試數(shù)學(xué)理卷 題型:解答題

(本小題滿分13分)

已知雙曲線的右頂點為A,右焦點為F,右準線與軸交于點B,且與一條漸近線交于點C,點O為坐標(biāo)原點,又,過點F的直線與雙曲線右交于點M、N,點P為點M關(guān)于軸的對稱點。

(1)求雙曲線的方程;

(2)證明:B、P、N三點共線;

(3)求面積的最小值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市高三起點考試理科數(shù)學(xué)卷 題型:選擇題

已知雙曲線的右頂點為E,過雙曲線的左焦點且垂直于軸的直線與該雙曲線相交A、B兩點,若,則該雙曲線的離心率是(    )

    A.        B.2              C.     D.不存在

 

查看答案和解析>>

同步練習(xí)冊答案