【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,直線l的方程為
(1)求曲線C的普通方程及直線l的直角坐標(biāo)方程;
(2)設(shè)P是曲線C上的任意一點(diǎn),求點(diǎn)P到直線l的距離的最大值.

【答案】
(1)解:因為曲線C的參數(shù)方程為 (θ為參數(shù)).

所以 ,

所以曲線C的普通方程為 ,

因為直線l的方程為

展開得ρsinθ﹣ρcosθ=3,即y﹣x=3,

所以直線l的直角坐標(biāo)方程為x﹣y+3=0;


(2)解:設(shè)

則點(diǎn)P到直線l的距離為

等號成立當(dāng)且僅當(dāng) ,

,即 時成立,

因此點(diǎn)P到直線l的距離的最大值為


【解析】(1)曲線C的參數(shù)方程消去參數(shù)θ,能求出曲線C的普通方程;直線l的極坐標(biāo)方程轉(zhuǎn)化為ρsinθ﹣ρcosθ=3,由此能求出直線l的直角坐標(biāo)方程.(2)設(shè) ,利用點(diǎn)到直線的距離公式求出點(diǎn)P到直線l的距離,由此能求出點(diǎn)P到直線l的距離的最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線x2 =1的右支上一點(diǎn)P,分別向圓C1:(x+4)2+y2=4和圓C2:(x﹣4)2+y2=1作切線,切點(diǎn)分別為M,N,則|PM|2﹣|PN|2的最小值為(
A.10
B.13
C.16
D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險公司針對企業(yè)職工推出一款意外險產(chǎn)品,每年每人只要交少量保費(fèi),發(fā)生意外后可一次性獲賠50萬元.保險公司把職工從事的所有崗位共分為A、B、C三類工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計出三類工種的每賠付頻率如下表(并以此估計賠付概率).

工種類別

A

B

C

賠付頻率

(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤都不得超過保費(fèi)的20%,試分別確定各類工種每張保單保費(fèi)的上限;
(Ⅱ)某企業(yè)共有職工20000人,從事三類工種的人數(shù)分布比例如圖,老板準(zhǔn)備為全體職工每人購買一份此種保險,并以(Ⅰ)中計算的各類保險上限購買,試估計保險公司在這宗交易中的期望利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實(shí)例,若輸入n,x的值分別為3,3,則輸出v的值為(
A.16
B.18
C.48
D.143

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2的正三角形△ABC中,D為BC的中點(diǎn),E,F(xiàn)分別在邊CA,AB上.
(1)若 ,求CE的長;
(2)若∠EDF=60°,問:當(dāng)∠CDE取何值時,△DEF的面積最?并求出面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A是雙曲線 =1(a>0,b>0)的左頂點(diǎn),F(xiàn)1 , F2分別為左、右焦點(diǎn),P為雙曲線上一點(diǎn),G是△F1PF2的重心,若 ,| |= ,| |+| |=8,則雙曲線的標(biāo)準(zhǔn)方程為(
A.x2 =1
B. ﹣y2=1
C. =1
D.x2 =1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ex+sinx(e為自然對數(shù)的底數(shù)),g(x)=ax,F(xiàn)(x)=f(x)﹣g(x).
(1)若x=0是F(x)的極值點(diǎn),且直線x=t(t≥0)分別與函數(shù)f(x)和g(x)的圖象交于P,Q,求P,Q兩點(diǎn)間的最短距離;
(2)若x≥0時,函數(shù)y=F(x)的圖象恒在y=F(﹣x)的圖象上方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2+ 的圖象經(jīng)過點(diǎn)(2,3),a為常數(shù).
(1)求a的值和函數(shù)f(x)的定義域;
(2)用函數(shù)單調(diào)性定義證明f(x)在(a,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】體積為 的正三棱錐A﹣BCD的每個頂點(diǎn)都在半徑為R的球O的球面上,球心O在此三棱錐內(nèi)部,且R:BC=2:3,點(diǎn)E為線段BD上一點(diǎn),且DE=2EB,過點(diǎn)E作球O的截面,則所得截面圓面積的取值范圍是(
A.[4π,12π]
B.[8π,16π]
C.[8π,12π]
D.[12π,16π]

查看答案和解析>>

同步練習(xí)冊答案