甲、乙、丙三人參加某次招聘會,假設(shè)甲能被聘用的概率是,甲、丙兩人同時不能被聘用的概率是,乙、丙兩人同時能被聘用的概率為,且三人各自能否被聘用相互獨立.
(1)求乙、丙兩人各自被聘用的概率;
(2)設(shè)為甲、乙、丙三人中能被聘用的人數(shù)與不能被聘用的人數(shù)之差的絕對值,求的分布列與均值(數(shù)學期望).
(1)乙、丙兩人各自被聘用的概率分別為、;(2)詳見解析.
【解析】
試題分析:(1)分別設(shè)乙、丙兩人各自被聘用的概率為、,利用事件的獨立性列出相應(yīng)的方程進行求解,從而得出乙、丙兩人各自被聘用的概率;(2)先列舉出隨機變量的可能取值,并根據(jù)事件的獨立性求出在相應(yīng)條件的概率,列出分布列并求出隨機變量的均值(即數(shù)學期望).
試題解析:(1)設(shè)乙、丙兩人各自被聘用的概率分別為、,
則甲、丙兩人同時不能被聘用的概率是,解得,
乙、丙兩人同時能被聘用的概率為,
因此乙、丙兩人各自被聘用的概率分別為、;
(2)的可能取值有、,
則
,
,
因此隨機變量的分布列如下表所示
所以隨機變量的均值(即數(shù)學期望).
考點:1.獨立事件概率的計算;2.離散型隨機變量的概率分布列與數(shù)學期望
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復(fù)習課時提升作業(yè)七十三第十章第十節(jié)練習卷(解析版) 題型:選擇題
下面是2×2列聯(lián)表:
| y1 | y2 | 總計 |
x1 | a | 21 | 73 |
x2 | 22 | 25 | 47 |
總計 | b | 46 | 120 |
則表中a,b的值分別為( )
(A)94,72 (B)52,50
(C)52,74 (D)74,52
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高中數(shù)學全國各省市理科導(dǎo)數(shù)精選22道大題練習卷(解析版) 題型:解答題
已知函數(shù),函數(shù)是函數(shù)的導(dǎo)函數(shù).
(1)若,求的單調(diào)減區(qū)間;
(2)若對任意,且,都有,求實數(shù)的取值范圍;
(3)在第(2)問求出的實數(shù)的范圍內(nèi),若存在一個與有關(guān)的負數(shù),使得對任意時恒成立,求的最小值及相應(yīng)的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年陜西省咸陽市高考模擬考試(一)理科數(shù)學試卷(解析版) 題型:選擇題
執(zhí)行如圖所示的程序框圖,輸入的N=2014,則輸出的S=( )
A.2011 B.2012 C.2013 D.2014
查看答案和解析>>
科目:高中數(shù)學 來源:2014年陜西省咸陽市高考模擬考試(一)理科數(shù)學試卷(解析版) 題型:選擇題
平面向量與的夾角為60°, 則( )
A. B. C.4 D.12
查看答案和解析>>
科目:高中數(shù)學 來源:2014年廣東省廣州市畢業(yè)班綜合測試一理科數(shù)學試卷(解析版) 題型:選擇題
某中學從某次考試成績中抽取若干名學生的分數(shù),并繪制成如圖所示的頻率分布直方圖,樣本數(shù)據(jù)分組為、、、、.若用分層抽樣的方法從樣本中抽取分數(shù)在范圍內(nèi)的數(shù)據(jù)個,則其中分數(shù)在范圍內(nèi)的樣本數(shù)據(jù)有( )
A.個 B.個 C.個 D.個
查看答案和解析>>
科目:高中數(shù)學 來源:2014年廣東省廣州市畢業(yè)班綜合測試一文科數(shù)學試卷(解析版) 題型:選擇題
設(shè)、是兩個非零向量,則使成立的一個必要非充分的條件是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)仿真模擬卷1練習卷(解析版) 題型:選擇題
已知雙曲線=1(a>0,b>0)的左、右焦點分別為F1,F2,點O為雙曲線的中心,點P在雙曲線右支上,△PF1F2內(nèi)切圓的圓心為Q,圓Q與x軸相切于點A,過F2作直線PQ的垂線,垂足為B,則下列結(jié)論成立的是( )
A.|OA|>|OB| B.|OA|<|OB|
C.|OA|=|OB| D.|OA|與|OB|大小關(guān)系不確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com