【題目】如圖,已知矩形ABCD所在平面與等腰直角三角形BEC所在平面互相垂直,BE⊥EC,AB=BE,M為線(xiàn)段AE的中點(diǎn).
(Ⅰ) 證明:BM⊥平面AEC;
(Ⅱ) 求MC與平面DEC所成的角的余弦值.
【答案】證明:(Ⅰ)因?yàn)槠矫鍭BCD⊥平面BEC,
所以AB⊥平面BEC,故AB⊥EC.
因?yàn)锽E⊥EC,所以EC⊥平面ABE,
故EC⊥BM.
因?yàn)锳B=BE,M為AE的中點(diǎn),所以AE⊥BM.
所以BM⊥平面AEC.
解:(Ⅱ)如圖,將幾何體ABCDE補(bǔ)成三棱柱AFD﹣BEC,
設(shè)EF的中點(diǎn)為G,連結(jié)MG,GC.
因?yàn)镸G∥BE,所以MG⊥平面DEC.
因此∠MCG為MC與平面DEC所成的角.
不妨設(shè)AB=2,則AB=BE=EC=2,
因此MG=1, , ,
故 ,
所以MC與平面DEC所成的角的余弦值為 .
【解析】(Ⅰ)由已知推導(dǎo)出AB⊥EC,EC⊥BM,AE⊥BM,由此能證明BM⊥平面AEC.(Ⅱ)將幾何體ABCDE補(bǔ)成三棱柱AFD﹣BEC,設(shè)EF的中點(diǎn)為G,連結(jié)MG,GC,推導(dǎo)出∠MCG為MC與平面DEC所成的角,由此能求出MC與平面DEC所成的角的余弦值.
【考點(diǎn)精析】本題主要考查了直線(xiàn)與平面垂直的判定和空間角的異面直線(xiàn)所成的角的相關(guān)知識(shí)點(diǎn),需要掌握一條直線(xiàn)與一個(gè)平面內(nèi)的兩條相交直線(xiàn)都垂直,則該直線(xiàn)與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線(xiàn)”這一條件不可忽視;b)定理體現(xiàn)了“直線(xiàn)與平面垂直”與“直線(xiàn)與直線(xiàn)垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想;已知為兩異面直線(xiàn),A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)正三角形等分成4個(gè)全等的小正三角形,將中間的一個(gè)正三角形挖掉(如圖1),再將剩余的每個(gè)正三角形分成4個(gè)全等的小正三角形,并將中間的一個(gè)正三角形挖掉,得圖2,如此繼續(xù)下去…
(1)圖3共挖掉多少個(gè)正三角形?
(2)設(shè)原正三角形邊長(zhǎng)為a,第n個(gè)圖形共挖掉多少個(gè)正三角形?這些正三角形面積和為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形ABC的頂點(diǎn)坐標(biāo)為A(﹣1,5)、B(﹣2,﹣1)、C(4,3).
(1)求AB邊上的高線(xiàn)所在的直線(xiàn)方程;
(2)求三角形ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x+t,g(x)=x2﹣t(t∈R)
(1)當(dāng)x∈[2,3]時(shí),求函數(shù)f(x)的值域(用t表示)
(2)設(shè)集合A={y|y=f(x),x∈[2,3]},B={y|y=|g(x)|,x∈[2,3]},是否存在正整數(shù)t,使得A∩B=A.若存在,請(qǐng)求出所有可能的t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市規(guī)定,高中學(xué)生在校期間須參加不少于80小時(shí)的社區(qū)服務(wù)才合格.某校隨機(jī)抽取20位學(xué)生參加社區(qū)服務(wù)的數(shù)據(jù),按時(shí)間段[75,80),[80,85),[85,90),[90,95),[95,100](單位:小時(shí))進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.
(1)求抽取的20人中,參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的學(xué)生人數(shù);
(2)從參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的學(xué)生中任意選取2人,求所選學(xué)生的參加社區(qū)服務(wù)時(shí)間在同一時(shí)間段內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離與到定直線(xiàn)的距離之比為.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)已知為定直線(xiàn)上一點(diǎn).
①過(guò)點(diǎn)作的垂線(xiàn)交軌跡于點(diǎn)(不在軸上),求證:直線(xiàn)與的斜率之積是定值;
②若點(diǎn)的坐標(biāo)為,過(guò)點(diǎn)作動(dòng)直線(xiàn)交軌跡于不同兩點(diǎn),線(xiàn)段上的點(diǎn)滿(mǎn)足,求證:點(diǎn)恒在一條定直線(xiàn)上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)修建一棟復(fù)古建筑,其窗戶(hù)設(shè)計(jì)如圖所示.圓的圓心與矩形對(duì)角線(xiàn)的交點(diǎn)重合,且圓與矩形上下兩邊相切(為上切點(diǎn)),與左右兩邊相交(, 為其中兩個(gè)交點(diǎn)),圖中陰影部分為不透光區(qū)域,其余部分為透光區(qū)域.已知圓的半徑為1m,且.設(shè),透光區(qū)域的面積為.
(1)求關(guān)于的函數(shù)關(guān)系式,并求出定義域;
(2)根據(jù)設(shè)計(jì)要求,透光區(qū)域與矩形窗面的面積比值越大越好.當(dāng)該比值最大時(shí),求邊的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】微信運(yùn)動(dòng)和運(yùn)動(dòng)手環(huán)的普及,增強(qiáng)了人民運(yùn)動(dòng)的積極性,每天一萬(wàn)步稱(chēng)為一種健康時(shí)尚,某中學(xué)在全校范圍內(nèi)內(nèi)積極倡導(dǎo)和督促師生開(kāi)展“每天一萬(wàn)步”活動(dòng),經(jīng)過(guò)幾個(gè)月的扎實(shí)落地工作后,學(xué)校想了解全校師生每天一萬(wàn)步的情況,學(xué)校界定一人一天走路不足千步為不健康生活方式,不少于千步為超健康生活方式者,其他為一般生活方式者,學(xué)校委托數(shù)學(xué)組調(diào)查,數(shù)學(xué)組采用分層抽樣的辦法去估計(jì)全校師生的情況,結(jié)合實(shí)際及便于分層抽樣,認(rèn)定全校教師人數(shù)為人,高一學(xué)生人數(shù)為人,高二學(xué)生人數(shù)人,高三學(xué)生人數(shù),從中抽取人作為調(diào)查對(duì)象,得到了如圖所示的這人的頻率分布直方圖,這人中有人被學(xué)校界定為不健康生活方式者.
(1)求這次作為抽樣調(diào)查對(duì)象的教師人數(shù);
(2)根據(jù)頻率分布直方圖估算全校師生每人一天走路步數(shù)的中位數(shù)(四舍五入精確到整數(shù)步);
(3)校辦公室欲從全校師生中速記抽取人作為“每天一萬(wàn)步”活動(dòng)的慰問(wèn)對(duì)象,計(jì)劃學(xué)校界定不健康生活方式者鞭策性精神鼓勵(lì)元,超健康生活方式者表彰獎(jiǎng)勵(lì)元,一般生活方式者鼓勵(lì)性獎(jiǎng)勵(lì)元,利用樣本估計(jì)總體,將頻率視為概率,求這次校辦公室慰問(wèn)獎(jiǎng)勵(lì)金額恰好為元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市司法部門(mén)為了宣傳《憲法》舉辦法律知識(shí)問(wèn)答活動(dòng),隨機(jī)對(duì)該市18~68歲的人群抽取一個(gè)容量為n的樣本,并將樣本數(shù)據(jù)分成五組:[18,28),[28,38),[38,48),[48,58),[58,68),再將其按從左到右的順序分別編號(hào)為第1組,第2組,…,第5組,繪制了樣本的頻率分布直方圖;并對(duì)回答問(wèn)題情況進(jìn)行統(tǒng)計(jì)后,結(jié)果如下表所示.
組號(hào) | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的比例 |
第1組 | [18,28) | 5 | 0.5 |
第2組 | [28,38) | 18 | a |
第3組 | [38,48) | 27 | 0.9 |
第4組 | [48,58) | x | 0.36 |
第5組 | [58,68) | 3 | 0.2 |
(1)分別求出a,x的值;
(2)從第2,3,4組回答正確的人中用分層抽樣方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(3)在(2)的前提下,決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求:所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com