【題目】已知橢圓的短軸長(zhǎng)為,且離心率為,圓

(1)求橢圓C的方程,

(2)點(diǎn)P在圓D上,F為橢圓右焦點(diǎn),線段PF與橢圓C相交于Q,若,求的取值范圍.

【答案】12

【解析】

1)根據(jù)短軸長(zhǎng)和離心率求解出,從而得到橢圓方程;(2)假設(shè)坐標(biāo),利用可得,代入圓中整理消元可得到關(guān)于的等式:,則此方程在上必有解;將方程左側(cè)看做二次函數(shù),通過(guò)二次函數(shù)圖像,討論得出的取值范圍.

1)由題可知,又,解得

橢圓的方程為

2)由(1)知圓 ,點(diǎn)坐標(biāo)為

設(shè),,由可得:,

所以,由可得:

,代入,消去,整理成關(guān)于的等式為:

,則此方程在上必須有解

,

,則(舍去)或

,則(舍去)或

上有且僅有一實(shí)根

則由得:

上有兩實(shí)根(包括兩相等實(shí)根)

解得:

綜上可得:的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定實(shí)數(shù) t,已知命題 p:函數(shù) 有零點(diǎn);命題 q: x∈[1,+∞) ≤4-1.

(Ⅰ)當(dāng) t=1 時(shí),判斷命題 q 的真假;

(Ⅱ)若 pq 為假命題,求 t 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分10分)一位網(wǎng)民在網(wǎng)上光顧某淘寶小店,經(jīng)過(guò)一番瀏覽后,對(duì)該店鋪中的五種商品有購(gòu)買(mǎi)意向.已知該網(wǎng)民購(gòu)買(mǎi)兩種商品的概率均為,購(gòu)買(mǎi)兩種商品的概率均為,購(gòu)買(mǎi)種商品的概率為.假設(shè)該網(wǎng)民是否購(gòu)買(mǎi)這五種商品相互獨(dú)立.

1)求該網(wǎng)民至少購(gòu)買(mǎi)4種商品的概率;

2)用隨機(jī)變量表示該網(wǎng)民購(gòu)買(mǎi)商品的種數(shù),求的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在中,,,點(diǎn)在拋物線.

1)求的邊所在的直線方程;

2)求的面積最小值,并求出此時(shí)點(diǎn)的坐標(biāo);

3)若為線段上的任意一點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查民眾對(duì)國(guó)家實(shí)行新農(nóng)村建設(shè)政策的態(tài)度,現(xiàn)通過(guò)網(wǎng)絡(luò)問(wèn)卷隨機(jī)調(diào)查了年齡在20周歲至80周歲的100人,他們年齡頻數(shù)分布和支持新農(nóng)村建設(shè)人數(shù)如下表:

年齡

頻數(shù)

10

20

30

20

10

10

支持新農(nóng)村建設(shè)

3

11

26

12

6

2

1)根據(jù)上述統(tǒng)計(jì)數(shù)據(jù)填下面的列聯(lián)表,并判斷是否有的把握認(rèn)為以50歲為分界點(diǎn)對(duì)新農(nóng)村建設(shè)政策的支持度有差異;

年齡低于50歲的人數(shù)

年齡不低于50歲的人數(shù)

合計(jì)

支持

不支持

合計(jì)

2)為了進(jìn)一步推動(dòng)新農(nóng)村建設(shè)政策的實(shí)施,中央電視臺(tái)某節(jié)目對(duì)此進(jìn)行了專(zhuān)題報(bào)道,并在節(jié)目最后利用隨機(jī)撥號(hào)的形式在全國(guó)范圍內(nèi)選出4名幸運(yùn)觀眾(假設(shè)年齡均在20周歲至80周歲內(nèi)),給予適當(dāng)?shù)莫?jiǎng)勵(lì).若以頻率估計(jì)概率,記選出4名幸運(yùn)觀眾中支持新農(nóng)村建設(shè)人數(shù)為,試求隨機(jī)變量的分布列和數(shù)學(xué)期望.

參考數(shù)據(jù):

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),則的最小值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中錯(cuò)誤的是( )

A. 從某社區(qū)65戶高收入家庭,280戶中等收入家庭,105戶低收入家庭中選出100戶調(diào)查社會(huì)購(gòu)買(mǎi)力的某一項(xiàng)指標(biāo),應(yīng)采用的最佳抽樣方法是分層抽樣

B. 線性回歸直線一定過(guò)樣本中心點(diǎn)

C. 若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越接近于1

D. 若一組數(shù)據(jù)1、、2、3的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中心在原點(diǎn),對(duì)稱(chēng)軸為坐標(biāo)軸的雙曲線與圓有公共點(diǎn),且圓在點(diǎn)處的切線與雙曲線的一條漸近線平行,則該雙曲線的實(shí)軸長(zhǎng)為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】天壇公園是明、清兩代皇帝“祭天”“祈谷”的場(chǎng)所.天壇公園中的圜丘臺(tái)共有三層(如圖1所示),上層壇的中心是一塊呈圓形的大理石板,從中心向外圍以扇面形石(如圖2所示).上層壇從第一環(huán)至第九環(huán)共有九環(huán),中層壇從第十環(huán)至第十八環(huán)共有九環(huán),下層壇從第十九環(huán)至第二十七環(huán)共有九環(huán);第一環(huán)的扇面形石有9塊,從第二環(huán)起,每環(huán)的扇面形石塊數(shù)比前一環(huán)多9塊,則第二十七環(huán)的扇面形石塊數(shù)是______;上、中、下三層壇所有的扇面形石塊數(shù)是_______

查看答案和解析>>

同步練習(xí)冊(cè)答案