5.全集U={-1,0,1,2,3,4,5,6 },A={3,4,5 },B={1,3,6 },那么集合{ 2,-1,0}是( 。
A.$\frac{π}{3}$B.$\frac{3}{5}$C.UA∩∁UBD.$-\frac{3}{5}$

分析 根據(jù)補(bǔ)集與交集的定義,即可得出{-1,0,2}=(∁UA)∩(∁UB).

解答 解:全集U={-1,0,1,2,3,4,5,6 },
A={3,4,5 },B={1,3,6 },
UA={-1,0,1,2,6},
UB={-1,0,2,4,5},
∴(∁UA)∩(∁UB)={ 2,-1,0}.
故選:C.

點(diǎn)評(píng) 本題考查了集合的定義與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖為從空中某個(gè)角度俯視北京奧運(yùn)會(huì)主體育場(chǎng)“鳥巢”頂棚所得的局部示意圖,在平面直角坐標(biāo)系中,下列給定的一系列直線中(其中θ為參數(shù),θ∈R),能形成這種效果的只可能是(  )
A.y=xsinθ+1B.y=x+cosθC.xcosθ+ysinθ+1=0D.y=xcosθ+sinθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知四棱錐P-ABCD,底面ABCD為正方形,側(cè)面PAD為直角三角形,且PA=PD,面PAD⊥面ABCD,E、F分別為AB、PD的中點(diǎn).
(Ⅰ)求證:EF∥面PBC;
(Ⅱ)求證:AP⊥面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若點(diǎn)P在$\frac{2π}{3}$角的終邊上,且P的坐標(biāo)為(-1,y),則y等于( 。
A.$\sqrt{3}$B.-$\sqrt{3}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.直線 l:(2m+1)x+(m+1)y-7m-4=0(m∈R)被圓C:(x-1)2+(y-2)2=25 所截得的最短的弦長(zhǎng)為4$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.△ABC中,D在AC上,且$\overrightarrow{AD}=\frac{1}{2}\overrightarrow{DC}$,P是BD上的點(diǎn),$\overrightarrow{AP}=m\overrightarrow{AB}+\frac{2}{9}\overrightarrow{AC}$,則m的值是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知$sin(α+\frac{π}{2})=\frac{3}{5}$,$α∈(-\frac{π}{2},0)$,則tanα的值為$-\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.有下列命題:
①“m>0”是“方程x2+my2=1表示橢圓”的充要條件;
②“a=1”是“直線l1:ax+y-1=0與直線l2:x+ay-2=0平行”的充分不必要條件;
③“函數(shù)f (x)=x3+mx單調(diào)遞增”是“m>0”的充要條件;
④已知p,q是兩個(gè)不等價(jià)命題,則“p或q是真命題”是“p且q是真命題”的必要不充分條件.
其中所有真命題的序號(hào)是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.對(duì)于函數(shù)y=ex,曲線y=ex在與坐標(biāo)軸交點(diǎn)處的切線方程為y=x+1,由于曲線y=ex在切線y=x+1的上方,故有不等式ex≥x+1,類比上述推理:對(duì)于函數(shù)y=lnx有不等式( 。
A.lnx≥x+1B.lnx≤1-xC.lnx≥x-1D.lnx≤x-1

查看答案和解析>>

同步練習(xí)冊(cè)答案