橢圓數(shù)學(xué)公式(a>b>0)的左、右焦點(diǎn)分別是F1、F2,過(guò)F1作傾斜角為45°的直線與橢圓的一個(gè)交點(diǎn)為M,若MF2垂直于x軸,則橢圓的離心率為________.


分析:根據(jù)題意,得到△MF1F2是以MF1為斜邊的等腰直角三角形,可設(shè)出它的三邊的長(zhǎng),再根據(jù)橢圓的定義和離心率的公式,即可得到離心率e==
解答:∵M(jìn)F2垂直于x軸,∠MF1F2=45°,
∴△MF1F2是等腰直角三角形,以MF1為斜邊.
設(shè)MF1=m,(m>0),則MF2=F1F2=m,
∵F1、F2是橢圓的左右焦點(diǎn),
∴MF1+MF2=2a,即2a=(1+)m
而2c=F1F2=m,所以根據(jù)橢圓離心率的定義,得
e====
故答案為:
點(diǎn)評(píng):本題給出橢圓的一個(gè)焦點(diǎn)三角形是等腰直角三角形,求橢圓的離心率,著重考查了橢圓的定義、橢圓的幾何性質(zhì)、幾何量的計(jì)算以及數(shù)形結(jié)合,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河北冀州中學(xué)高二年級(jí)下學(xué)期第三次月考題(文) 題型:解答題

已知橢圓(a>b>0)的離心率e=,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A、B,已知點(diǎn)A的坐標(biāo)為
(i)若,求直線l的傾斜角;
(ii)若點(diǎn)Q在線段AB的垂直平分線上,且.求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年浙江省杭州市重點(diǎn)高中高考命題比賽數(shù)學(xué)參賽試卷14(理科)(解析版) 題型:解答題

已知橢圓(a>b>0)的右焦點(diǎn)為F2(3,0),離心率為
(1)求橢圓的方程.
(2)設(shè)直線y-kx與橢圓相交于A,B兩點(diǎn),M,N分別為線段AF2,BF2的中點(diǎn),若坐標(biāo)原點(diǎn)O在以MN為直徑的圓上,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖北省天門市高考數(shù)學(xué)模擬試卷3(文科)(解析版) 題型:解答題

已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經(jīng)過(guò)點(diǎn)M(0,1),與橢圓C交于不同兩點(diǎn)A、B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省廣州市華僑中學(xué)高三一輪復(fù)習(xí)檢測(cè)數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知F1,F(xiàn)2分別是橢圓(a>b>0)的左,右焦點(diǎn),若橢圓的右準(zhǔn)線上存在一點(diǎn)P,使得線段PF1的垂直平分線過(guò)點(diǎn)F2,則離心率的范圍是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年河北省邯鄲市高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題

(本小題滿分分)

(普通高中)已知橢圓(a>b>0)的離心率,焦距是函數(shù)的零點(diǎn).

(1)求橢圓的方程;

(2)若直線與橢圓交于、兩點(diǎn),,求k的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案