已知函數(shù)f(x)=
2x-1
x+1
,x∈[1,17]

(1)證明函數(shù)f(x)在[1,17]上為增函數(shù);
(2)求此函數(shù)的最大值和最小值.
考點(diǎn):函數(shù)單調(diào)性的性質(zhì),函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用函數(shù)單調(diào)性的定義證明即可;
(2)利用(1)的結(jié)論,即可求得最值.
解答: (1)證明:設(shè)任意的x1,x2∈[1,17],且x1<x2,則
f(x1)-f(x2)=
2x1-1
x1+1
-
2x2-1
x2+1
=
3(x1-x2)
(x1+1)(x2+1)

∵x1,x2∈[1,17],且x1<x2,
∴x1-x2<0,(x1+1)(x2+1)>0,
3(x1-x2)
(x1+1)(x2+1)
<0,即f(x1)<f(x2),
∴函數(shù)f(x)在[1,17]上為增函數(shù).
(2)解:由(1)可知函數(shù)f(x)在[1,17]上為增函數(shù);
∴當(dāng)x=1時(shí),f(x)有最小值為
1
2

當(dāng)x=17時(shí),f(x)有最大值為
11
6
點(diǎn)評(píng):本題主要考查學(xué)生對(duì)函數(shù)的單調(diào)性的證明方法---定義法,以及利用函數(shù)的單調(diào)性求最值的方法,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|
1+x
1-x
≥0}
,集合B={y|y=sinx,x∈R},則B∩CRA=(  )
A、∅B、{1}
C、{-1}D、{-1,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

畫出y=cosx的圖象,寫出其單調(diào)區(qū)間,對(duì)稱軸,對(duì)稱中心并寫出函數(shù)最大值,最小值及對(duì)應(yīng)x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知軸對(duì)稱平面五邊形ADCEF(如圖1),BC為對(duì)稱軸,AD⊥CD,AD=AB=1,CD=BC=
3
,將此圖形沿BC折疊成直二面角,連接AF、DE得到幾何體(如圖2).
(1)證明:AF∥平面DEC;      
(2)求二面角E-AD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+
a
x+1
-
a
2
(a∈R)
(1)當(dāng)a=2時(shí),求函數(shù)f(x)在點(diǎn)P(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在(0,+∞)上為增函數(shù),求a的取值范圍;
(3)設(shè)x1>x2>0,求證
x1-x2
lnx1-lnx2
<x1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2
3
,A、B兩點(diǎn)分別是橢圓E的右頂點(diǎn)、上頂點(diǎn),且直線AB與圓O:x2+y2=
4
5
相切
(1)求橢圓E的方程;
(2)過原點(diǎn)O任作兩條相互垂直的射線交橢圓E于P、Q兩點(diǎn),試判斷直線PQ是否總與圓O相切,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2x+sinxcosx,x∈R.
(1)求f(
8
)的值;
(2)求函數(shù)f(x)=cos2x+4cosxsinx(x∈R)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,由曲線y=x2+4與直線y=5x,x=0,x=4所圍成平面圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
y≤x-1
x≤3
x+5y≥4
,則
x2
y
的最小值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案