如圖,已知橢圓的離心率

,以該橢圓上的點和橢圓的左、右焦點

為頂點的三角形的周長為,一等軸雙曲線

的頂點是該橢圓的焦點,設(shè)P為該雙曲線上異于項點

的任一點,直線與橢圓的交點分別為A、

B和C、D.

   (Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

   (Ⅱ)設(shè)直線的斜率分別為、,證明:;

   (Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.

  

 

 

【答案】

 【解析】(Ⅰ)由題意知,橢圓離心率為,得,又,所以可解得,所以

所以橢圓的標(biāo)準(zhǔn)方程為;所以橢圓的焦點坐標(biāo)為(,0),因為雙曲線為等軸雙曲線,且頂點是該橢圓的焦點,所以該雙曲線的標(biāo)準(zhǔn)方程為

   (II)設(shè)點

所以在雙曲線上,

所以有

所以

   (III)假設(shè)存在常數(shù),使得|AB|+|CD|=|AB|·|CD|恒成立,則由(II)知

,所以設(shè)直線AB的方程為

則直線CD的方程為

由方程組

設(shè)

所以,同理可得

    又因為|AB|+|CD|=|AB|·|CD|,所以有

   【命題意圖】本題考查了橢圓的定義、離心率、橢圓與雙曲線的標(biāo)準(zhǔn)方程、直線與圓錐曲線的位置關(guān)系,是一道綜合性的試題,考查了學(xué)生綜合運用知識解決問題的能力。其中問題(3)是一個開放性問題,考查了同學(xué)們觀察、推理以及創(chuàng)造性地分析問題、解決問題的能力。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年威海市質(zhì)檢)(14分)如圖,已知橢圓的離心率為e,點F為其下焦點,點A為其上頂點,過F的直線與橢圓C相交于P、Q兩點,且滿足:

   (1)試用a表示;

   (2)求e的最大值;

   (3)若取值范圍;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設(shè)為該雙曲線上異于頂點的任一點,直線與橢圓的交點分別為.

(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)直線、的斜率分別為,證明;

(Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分)

  如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的

  左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢

  圓的焦點,設(shè)為該雙曲線上異于頂點的任一點,直線與橢圓的交點

  分別 為

   (Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程; 

   (Ⅱ)設(shè)直線的斜率分別為、,證明;

   (Ⅲ)是否存在常數(shù),使得恒成立?

      若存在,求的值;若不存在,請說明理由.

                                                             

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆山西大學(xué)附中高三4月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設(shè)為該雙曲線上異于頂點的任一點,直線與橢圓的交點分別為.

(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)直線、的斜率分別為、,證明;

(Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆遼寧省莊河市高二開學(xué)初考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左右焦點F1、F2為頂點的三角形的周長為。一等軸雙曲線的頂點是該橢圓的焦點,設(shè)P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的焦點分別為A、B和C、D。

(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程

(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1

(3)是否存在常數(shù),使得|AB|+|CD|=|AB|·|CD|恒成立?

若存在,求的值,若不存在,請說明理由。

 

查看答案和解析>>

同步練習(xí)冊答案