【題目】已知函數(shù)f(x)=4cosωxsin(ωx+ )+a(ω>0)圖象上最高點的縱坐標為2,且圖象上相鄰兩個最高點的距離為π.
(Ⅰ)求a和ω的值;
(Ⅱ)求函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間.

【答案】解:(Ⅰ) = =

時,f(x)取得最大值2+1+a=3+a

又f(x)最高點的縱坐標為2,

∴3+a=2,即a=﹣1.

又f(x)圖象上相鄰兩個最高點的距離為π,

∴f(x)的最小正周期為T=π

,ω=1

(Ⅱ)由(Ⅰ)得

令k=0,得:

故函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間為


【解析】根據(jù)兩角和的正弦公式和二倍角公式將f(x)化簡為f(x)=Asin(ωx+φ)的形式,由正弦函數(shù)的圖象和性質(zhì)求出a和ω的值,找到f(x)的單調(diào)區(qū)間.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列{an}的前n項和為Sn , 若{an}和 都是等差數(shù)列,且公差相等.
(1)求數(shù)列{an}的通項公式;
(2)令bn= ,cn=bnbn+1 , 求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一個樹形圖依據(jù)下列規(guī)律不斷生長:1個空心圓點到下一行僅生長出1個實心圓點,1個實心圓點到下一行生長出1個實心圓點和1個空心圓點.則第11行的實心圓點的個數(shù)是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ex+m在x=1處有極值,求m的值及f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】要得到函數(shù)y=3cosx的圖象,只需將函數(shù)y=3sin(2x﹣ )的圖象上所有點的( )
A.橫坐標縮短到原來的 (縱坐標不變),所得圖象再向左平移 個單位長度
B.橫坐標縮短到原來的 (縱坐標不變),所得圖象再向右平移 個單位長度
C.橫坐標伸長到原來的2倍(縱坐標不變),所得圖象再向左平移 個單位長度
D.橫坐標伸長到原來的2倍(縱坐標不變),所得圖象再向右平移 個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣x+2a﹣1(a>0).
(1)若f(x)在區(qū)間[1,2]為單調(diào)增函數(shù),求a的取值范圍;
(2)設(shè)函數(shù)f(x)在區(qū)間[1,2]上的最小值為g(a),求g(a)的表達式;
(3)設(shè)函數(shù) ,若對任意x1 , x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某校組織的一次籃球定點投籃訓練中,規(guī)定每人最多投3次;在A處每投進一球得3分,在B處每投進一球得2分;如果前兩次得分之和超過3分即停止投籃,否則投第三次,某同學在A處的命中率q1為0.25,在B處的命中率為q2 , 該同學選擇先在A處投一球,以后都在B處投,用ξ表示該同學投籃訓練結(jié)束后所得的總分,其分布列為:

ξ

0

2

3

4

5

p

0.03

0.24

0.01

0.48

0.24


(1)求q2的值;
(2)求隨機變量ξ的數(shù)學期望Eξ;
(3)試比較該同學選擇都在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等比數(shù)列{an}的各項都是正數(shù),2a5 , a4 , 4a6成等差數(shù)列,且滿足 ,數(shù)列{bn}的前n項和為 ,n∈N* , 且b1=1
(1)求數(shù)列{an},{bn}的通項公式
(2)設(shè) ,n∈N* , {Cn}前n項和為 ,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,記拋物線y=x﹣x2與x軸所圍成的平面區(qū)域為M,該拋物線與直線y=kx(k>0)所圍成的平面區(qū)域為N,向區(qū)域M內(nèi)隨機拋擲一點P,若點P落在區(qū)域N內(nèi)的概率為 ,則k的值為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案