設數(shù)列{an}的前n項和為Sn,且方程x2-anx-an=0有一根為Sn-1(n∈N*).

(1)求a1,a2;

(2)猜想數(shù)列{Sn}的通項公式,并給出證明.


 (1)當n=1時,方程x2-a1x-a1=0有一根為S1-1=a1-1,

∴(a1-1)2-a1(a1-1)-a1=0,

解得a1=.當n=2時,方程x2-a2x-a2=0有一根為S2-1=a1+a2-1=a2-

∴(a2-)2-a2(a2-)-a2=0,解得a2=.

(2)由題意知(Sn-1)2-an(Sn-1)-an=0,

當n≥2時,an=Sn-Sn-1,代入上式整理得

SnSn-1-2Sn+1=0,解得Sn=.

由(1)得S1=a1=,S2=a1+a2=.

猜想Sn= (n∈N*).

下面用數(shù)學歸納法證明這個結論.

①當n=1時,結論成立.

②假設n=k(k∈N*,k≥1)時結論成立,即Sk=,當n=k+1時,

Sk+1=.

即當n=k+1時結論成立.

由①②知Sn=對任意的正整數(shù)n都成立.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:


某校高二年級研究性學習小組,為了分析2011年我國宏觀經(jīng)濟形勢,上網(wǎng)查閱了2010年和2011年2—6月我國CPI同比(即當年某月與前一年同月相比)的增長數(shù)據(jù)(見下表),但2011年4,5,6三個月的數(shù)據(jù)(分別記為x,yz)沒有查到.有的同學清楚記得2011年2,3,4,5,6五個月的CPI數(shù)據(jù)成等差數(shù)列.

(1)求x,y,z的值;

(2)求2011年2—6月我國CPI的數(shù)據(jù)的方差;

(3)一般認為,某月CPI達到或超過3個百分點就已經(jīng)通貨膨脹,而達到或超過5個百分點則嚴重通貨膨脹.現(xiàn)隨機地從下表2010年的五個月和2011年的五個月的數(shù)據(jù)中各抽取一個數(shù)據(jù),求相同月份2010年通貨膨脹,并且2011年嚴重通貨膨脹的概率.

附:我國2010年和2011年2—6月的CPI數(shù)據(jù)(單位:百分點.注:1個百分點=1%)

年份

2月

3月

4月

5月

6月

2010

2.7

2.4

2.8

3.1

2.9

2011

4.9

5.0

x

y

z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


設雙曲線的漸近線方程為,則的值為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


對于不等式<n+1(n∈N*),某同學用數(shù)學歸納法的證明過程如下:

(1)當n=1時,<1+1,不等式成立.

(2)假設當n=k(k∈N*且k≥1)時,不等式成立,即<k+1,則當n=k+1時,=(k+1)+1,∴當n=k+1時,不等式成立,則上述證法(    )

A.過程全部正確     B.n=1驗得不正確

C.歸納假設不正確   D.從n=k到n=k+1的推理不正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


若數(shù)列的通項公式,記,試通過計算的值,推測出

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


一個容量為20的樣本數(shù)據(jù)分組后,分組與頻數(shù)分別如下:,2;,3;,4;,5;,4;,2.則樣本在上的頻率是     .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知正數(shù)滿足,則的最小值為  

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


復數(shù),若的實部和虛部互為相反數(shù),則實數(shù)的值為(     )

A. 3                  B.                 C. -               D. -3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知A、B為拋物線C:y2 = 4x上的兩個動點,點A在第一象限,點B在第四象限l1、l2分別過點A、B且與拋物線C相切,P為l1、l2的交點.

(Ⅰ)若直線AB過拋物線C的焦點F,求證:動點P在一條定直線上,并求此直線方程;

(Ⅱ)設C、D為直線l1、l2與直線x = 4的交點,求面積的最小值.

查看答案和解析>>

同步練習冊答案