【題目】某公司為了解某產品的獲利情況,將今年17月份的銷售收入(單位:萬元)與純利潤(單位:萬元)的數(shù)據(jù)進行整理后,得到如下表格:

月份

1

2

3

4

5

6

7

銷售收入

13

13.5

13.8

14

14.2

14.5

15

純利潤

3.2

3.8

4

4.2

4.5

5

5.5

該公司先從這7組數(shù)據(jù)中選取5組數(shù)據(jù)求純利潤關于銷售收入的線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.假設選取的是2月至6月的數(shù)據(jù).

1)求純利潤關于銷售收入的線性回歸方程(精確到0.01);

2)若由線性回歸方程得到的估計數(shù)據(jù)與檢驗數(shù)據(jù)的誤差均不超過0.1萬元,則認為得到的線性回歸方程是理想的.試問該公司所得線性回歸方程是否理想?

參考公式:,,;參考數(shù)據(jù):.

【答案】1;(2)是

【解析】

1)先求出的平均數(shù),再根據(jù)公式求出回歸方程;

2)根據(jù)所求出的回歸方程,依次檢驗1,7兩月的數(shù)據(jù)誤差是否超過0.1,即可下結論.

1

,

.

故純利潤關于銷售收入的線性回歸方程是.

2)當時,,

時,,.

故該公司所得線性回歸方程是理想的.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點在原點,對稱軸是軸,且過點.

(Ⅰ)求拋物線的方程;

(Ⅱ)已知斜率為的直線軸于點,且與曲線相切于點,點在曲線上,且直線軸, 關于點的對稱點為,判斷點是否共線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,四邊形ABCD是直角梯形,,,M是棱PC上一點,且,平面MBD

1)求實數(shù)λ的值;

2)若平面平面ABCD為等邊三角形,且三棱錐P-MBD的體積為2,求PA的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知個正整數(shù),它們的平均數(shù)是,中位數(shù)是,唯一眾數(shù)是,則這個數(shù)方差的最大值為__________.(精確到小數(shù)點后一位)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“科技引領,布局未來”科技研發(fā)是企業(yè)發(fā)展的驅動力量.2007年至2018年,某企業(yè)連續(xù)12年累計研發(fā)投入達4100億元,我們將研發(fā)投入與經營收入的比值記為研發(fā)投入占營收比.這12年間的研發(fā)投入(單位:十億元)用圖中的條形圖表示,研發(fā)投入占營收比用圖中的折線圖表示.

根據(jù)折線圖和條形圖,下列結論錯誤的是( 。

A. 2012﹣2013 年研發(fā)投入占營收比增量相比 2017﹣2018 年增量大

B. 該企業(yè)連續(xù) 12 年研發(fā)投入逐年增加

C. 2015﹣2016 年研發(fā)投入增值最大

D. 該企業(yè)連續(xù) 12 年研發(fā)投入占營收比逐年增加

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一個數(shù)列的各項是12,首項是1,且在第1和第1之間有2,即1,2,1,2,2,1,2,2,2,2,1,22,2,22,2,22,1…,則此數(shù)列的前2017項的和______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,等腰梯形ABCD中,ABCD,AD=AB=BC=1CD=2,ECD中點,AEBD交于點O,將△ADE沿AE折起,使點D到達點P的位置(P平面ABCE).

(Ⅰ)證明:平面POB⊥平面ABCE;

(Ⅱ)若直線PB與平面ABCE所成的角為,求二面角A-PE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓錐的頂點為S,底面圓O的兩條直徑分別為AB和CD,且AB⊥CD,若平面平面.現(xiàn)有以下四個結論:

①AD∥平面SBC;

;

③若E是底面圓周上的動點,則△SAE的最大面積等于△SAB的面積;

與平面SCD所成的角為45°.

其中正確結論的序號是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,圓的方程為.

1)若圓上有兩點關于直線對稱,且,求直線的方程;

2)圓軸相交于兩點,圓內的動點使,,成等比數(shù)列,求的取值范圍.

查看答案和解析>>

同步練習冊答案