兩球O1和O2在棱長為1的正方體ABCD-A1B1C1D1的內(nèi)部,且互相外切,若球O1與過點A的正方體的三個面相切,球O2與過點C1的正方體的三個面相切,則球O1和O2的表面積之和的最小值為( )
A.
B.
C.
D.
【答案】分析:設(shè)出球O1與球O2的半徑,求出面積之和,利用相切關(guān)系得到半徑與正方體的對角線的關(guān)系,通過基本不等式,從而得出面積的最小值.
解答:解:設(shè)球O1與球O2的半徑分別為r1,r2,∴r1+r2+(r1+r2)=.r1+r2==
r1+r2≥2,球O1與球O2的面積之和為:
S=4π(r12+r22)=4π(r1+r22-8πr1r2
=,當(dāng)且僅當(dāng)r1=r2時取等號
其面積最小值為
故選A.
點評:本題是中檔題,考查球與正方體相切關(guān)系的應(yīng)用,考查基本不等式求解最值問題,考查計算能力,空間想象能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

兩球O1和O2在棱長為1的正方體ABCD-A1B1C1D1的內(nèi)部,且互相外切,若球O1與過點A的正方體的三個面相切,球O2與過點C1的正方體的三個面相切,則球O1和O2的表面積之和的最小值為( 。
A、(6-3
3
B、(8-4
3
C、(6+3
3
D、(8+4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

兩球O1和O2在棱長為1的正方體ABCD-A1B1C1D1的內(nèi)部,且互相外切,若球O1與過點A的正方體的三個面相切,球O2與過點C1的正方體的三個面相切,則球O1和O2的表面積之和的最小值為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

同步練習(xí)冊答案