(2013•廣州一模)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=2,a2=8,Sn+1+4Sn-1=5Sn(n≥2),Tn是數(shù)列{log2an}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求Tn;
(3)求滿足(1-
1
T2
)(1-
1
T3
)…(1-
1
Tn
)>
1010
2013
的最大正整數(shù)n的值.
分析:(1)將條件中的和關(guān)系式轉(zhuǎn)化為數(shù)列的項(xiàng)關(guān)系,判斷數(shù)列的特征,再求解;
(2)利用等差數(shù)列的前項(xiàng)n和公式求解即可;
(3)利用約分消項(xiàng)化簡(jiǎn)左式,判斷n滿足的條件,分析求解即可.
解答:解:(1)∵當(dāng)n≥2時(shí),Sn+1+4Sn-1=5Sn,
∴Sn+1-Sn=4(Sn-Sn-1).∴an+1=4an
∵a1=2,a2=8,∴a2=4a1
∴數(shù)列{an}是以a1=2為首項(xiàng),公比為4的等比數(shù)列.
an=2•4n-1=22n-1
(2)由(1)得:log2an=log222n-1=2n-1,
∴Tn=log2a1+log2a2+…+log2an=1+3+…+(2n-1)=
n(1+2n-1)
2
=n2
(3)(1-
1
T2
)(1-
1
T3
)•…•(1-
1
Tn
)
=(1-
1
22
)(1-
1
32
)•…•(1-
1
n2
)

=
22-1
22
32-1
32
42-1
42
•…•
n2-1
n2
=
1•3•2•4•3•5•…•(n-1)(n+1)
223242•…•n2
=
n+1
2n

n+1
2n
1010
2013
,解得:n<287
4
7

故滿足條件的最大正整數(shù)n的值為287.
點(diǎn)評(píng):本題考查了等差數(shù)列的前n項(xiàng)和公式,數(shù)列的項(xiàng)與和之間的關(guān)系及數(shù)列的綜合問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州一模)
1
0
cosx
dx=
sin1
sin1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州一模)已知經(jīng)過同一點(diǎn)的n(n∈N*,n≥3)個(gè)平面,任意三個(gè)平面不經(jīng)過同一條直線.若這n個(gè)平面將空間分成f(n)個(gè)部分,則f(3)=
8
8
,f(n)=
n2-n+2
n2-n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州一模)函數(shù)f(x)=
2-x
+ln(x-1)
的定義域?yàn)?!--BA-->
(1,2]
(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州一模)如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,點(diǎn)M為PC的中點(diǎn).
(1)求證:PA∥平面BMD;
(2)求證:AD⊥PB;
(3)若AB=PD=2,求點(diǎn)A到平面BMD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州一模)已知n∈N*,設(shè)函數(shù)fn(x)=1-x+
x2
2
-
x3
3
+…-
x2n-1
2n-1
,x∈R

(1)求函數(shù)y=f2(x)-kx(k∈R)的單調(diào)區(qū)間;
(2)是否存在整數(shù)t,對(duì)于任意n∈N*,關(guān)于x的方程fn(x)=0在區(qū)間[t,t+1]上有唯一實(shí)數(shù)解?若存在,求t的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案