(12分)已知橢圓的離心率,過右焦點(diǎn)的直線與橢圓相交于兩點(diǎn),當(dāng)直線的斜率為1時,坐標(biāo)原點(diǎn)到直線的距離為.
(1)求橢圓的方程
(2)橢圓上是否存在點(diǎn),使得當(dāng)直線繞點(diǎn)轉(zhuǎn)到某一位置時,有成立?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo)及對應(yīng)直線方程;若不存在,請說明理由。
(1)(2)存在,坐標(biāo)為或.
解析試題分析:(1)因為直線過右焦點(diǎn),斜率為1,
所以直線的方程為:即.
坐標(biāo)原點(diǎn)到直線的距離為,所以,所以. …2分
因為離心率為,所以所以,
所以橢圓C的方程為. …4分
(2)因為直線過右焦點(diǎn),所以當(dāng)直線斜率不存在時,直線方程為:
所以所以,為右端點(diǎn)時,,
所以此時沒有符合要求的點(diǎn).
當(dāng)直線斜率存在時,設(shè)直線方程為:,
由得:. …7分
設(shè)點(diǎn)的坐標(biāo)分別為,,
則,因為,,
所以,
所以,
所以點(diǎn)的坐標(biāo)為,且符合橢圓方程,
所以,解得
所以點(diǎn)的坐標(biāo)為或. …12分
考點(diǎn):本小題主要考查了橢圓標(biāo)準(zhǔn)方程的求法,直線與橢圓的位置關(guān)系和平面向量的坐標(biāo)運(yùn)算,考查學(xué)生分析問題、解決問題的能力和運(yùn)算求解能力.
點(diǎn)評:設(shè)直線方程時要注意斜率存在與不存在兩種情況,求解直線與橢圓位置關(guān)系問題時,通常要聯(lián)立方程組,運(yùn)算量比較大,應(yīng)該仔細(xì)計算,并且要注意通性通法的應(yīng)用,加強(qiáng)解題的規(guī)范性.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的焦點(diǎn)和,長軸長6,設(shè)直線交橢圓于,兩點(diǎn),求線段的中點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的焦點(diǎn)F1(-,0)和F2(,0),長軸長6。
(1)求橢圓C的標(biāo)準(zhǔn)方程。
(2)設(shè)直線交橢圓C于A、B兩點(diǎn),求線段AB的中點(diǎn)坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
設(shè)直線與拋物線交于不同兩點(diǎn)A、B,F(xiàn)為拋物線的焦點(diǎn)。
(1)求的重心G的軌跡方程;
(2)如果的外接圓的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)(文科)已知曲線的離心率,直線過、兩點(diǎn),原點(diǎn)到的距離是.
(Ⅰ)求雙曲線的方程;
(Ⅱ)過點(diǎn)作直線交雙曲線于兩點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)已知,且點(diǎn)A和點(diǎn)B都在橢圓內(nèi)部,
(1)請列出有序數(shù)組的所有可能結(jié)果;
(2)記“使得成立的”為事件A,求事件A發(fā)生的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)雙曲線C:的左、右頂點(diǎn)分別為A1、A2,垂直于x軸的直線m與雙曲線C交于不同的兩點(diǎn)。
(1)若直線m與x軸正半軸的交點(diǎn)為T,且,求點(diǎn)T的坐標(biāo);
(2)求直線A1P與直線A2Q的交點(diǎn)M的軌跡E的方程;
(3)過點(diǎn)F(1,0)作直線l與(Ⅱ)中的軌跡E交于不同的兩點(diǎn)A、B,設(shè),若(T為(1)中的點(diǎn))的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的右焦點(diǎn)為,離心率為.
(1)若,求橢圓的方程; (2)設(shè)直線與橢圓相交于兩點(diǎn),分別為線段的中點(diǎn).若坐標(biāo)原點(diǎn)在以為直徑的圓上,且,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com