【題目】如圖在棱錐P﹣ABCD中,ABCD為矩形,PD⊥面ABCD,PB=2,PB與面PCD成45°角,PB與面ABD成30°角.
(1)在PB上是否存在一點(diǎn)E,使PC⊥面ADE,若存在確定E點(diǎn)位置,若不存在,請(qǐng)說明理由;
(2)當(dāng)E為PB中點(diǎn)時(shí),求二面角P﹣AE﹣D的余弦值.
【答案】
(1)解:法一:要證明PC⊥面ADE,易知AD⊥面PDC,即得AD⊥PC,故只需 即可,
所以由 ,即存在點(diǎn)E為PC中點(diǎn)
法二:建立如圖所示的空間直角坐標(biāo)系D﹣XYZ,
由題意知PD=CD=1, ,設(shè) ,∴ ,
由 ,得 ,
即存在點(diǎn)E為PC中點(diǎn)
(2)解:由(1)知D(0,0,0), , ,P(0,0,1) , , ,
設(shè)面ADE的法向量為 ,面PAE的法向量為
由的法向量為 得, 得
同理求得 所以
故所求二面角P﹣AE﹣D的余弦值為 .
【解析】(1)法一:要證明PC⊥面ADE,只需證明AD⊥PC,通過證明 即可,然后推出存在點(diǎn)E為PC中點(diǎn).法二:建立如圖所示的空間直角坐標(biāo)系D﹣XYZ,設(shè) ,通過 =0得到 ,即存在點(diǎn)E為PC中點(diǎn). (2)由(1)知求出面ADE的法向量,面PAE的法向量,利用空間向量的數(shù)量積.求解二面角P﹣AE﹣D的余弦值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用直線與平面垂直的判定的相關(guān)知識(shí)可以得到問題的答案,需要掌握一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+x在區(qū)間[2,3]上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( )
A.[﹣2,+∞)
B.[﹣3,+∞)
C.[0,+∞)
D.(﹣∞,﹣2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù) 的圖象向右平移 個(gè)周期后,所得圖象對(duì)應(yīng)的函數(shù)為f(x),則函數(shù)f(x)的單
調(diào)遞增區(qū)間( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)進(jìn)行有獎(jiǎng)促銷活動(dòng),顧客購物每滿500元,可選擇返回50元現(xiàn)金或參加一次抽獎(jiǎng),抽獎(jiǎng)規(guī)則如下:從1個(gè)裝有6個(gè)白球、4個(gè)紅球的箱子中任摸一球,摸到紅球就可獲得100元現(xiàn)金獎(jiǎng)勵(lì),假設(shè)顧客抽獎(jiǎng)的結(jié)果相互獨(dú)立.
(Ⅰ)若顧客選擇參加一次抽獎(jiǎng),求他獲得100元現(xiàn)金獎(jiǎng)勵(lì)的概率;
(Ⅱ)某顧客已購物1500元,作為商場(chǎng)經(jīng)理,是希望顧客直接選擇返回150元現(xiàn)金,還是選擇參加3次抽獎(jiǎng)?說明理由;
(Ⅲ)若顧客參加10次抽獎(jiǎng),則最有可能獲得多少現(xiàn)金獎(jiǎng)勵(lì)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形OABC邊長(zhǎng)為3,點(diǎn)M,N分別為線段BC,AB上一點(diǎn),且2BM=MC,AN=NB,P為△BNM內(nèi)一點(diǎn)(含邊界),設(shè) (λ,μ為實(shí)數(shù)),則 的最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱錐P﹣ABCD中,PA=AB=a,E是棱PC的中點(diǎn).
(1)求證:PC⊥BD;
(2)求直線BE與PA所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義域均為D的三個(gè)函數(shù)f(x),g(x),h(x)滿足條件:對(duì)任意x∈D,點(diǎn)(x,g(x)與點(diǎn)(x,h(x)都關(guān)于點(diǎn)(x,f(x)對(duì)稱,則稱h(x)是g(x)關(guān)于f(x)的“對(duì)稱函數(shù)”.已知g(x)= ,f(x)=2x+b,h(x)是g(x)關(guān)于f(x)的“對(duì)稱函數(shù)”,且h(x)≥g(x)恒成立,則實(shí)數(shù)b的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AC=1, ,設(shè)∠BAC=x,記 ;
(1)求函數(shù)f(x)的解析式及定義域;
(2)試寫出函數(shù)f(x)的單調(diào)遞增區(qū)間,并求方程 的解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)x,y滿足不等式組 ,若目標(biāo)函數(shù)z=kx+y僅在點(diǎn)(1,1)處取得最小值,則實(shí)數(shù)k的取值范圍是 ( )
A.(﹣1,+∞)
B.(﹣∞,﹣1)
C.(1,+∞)
D.(﹣∞,1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com