已知函數(shù)f(x)=3-2log2x,g(x)=log2x.
(1)如果x∈[1,4],求函數(shù)h(x)=(f(x)+1)g(x)的值域;
(2)求函數(shù)M(x)=的最大值;
(3)如果不等式f(x2)f()>kg(x)對x∈[2,4]有解,求實數(shù)k的取值范圍.
(1)[0,2].(2)當x=2時,M(x)取到最大值為1.
(3)k<-2.
【解析】
試題分析:(1)h(x)=(4-2log2x)·log2x=-2(log2x-1)2+2,
∵x∈[1,4],∴l(xiāng)og2x∈[0,2],
∴h(x)的值域為[0,2].
(2):f(x)-g(x)=3(1-log2x).
當x>2時,f(x)<g(x);當0<x≤2時,f(x)≥g(x).
∴M(x)==
當0<x≤2時,M(x)最大值為1;
當x>2時,M(x)<1;
綜上:當x=2時,M(x)取到最大值為1.
(3)由f(x2)f()>kg(x)得
(3-4log2x)(3-log2x)>k·log2x,
令t=log2x,∵x∈[2,4],∴t∈1,2],∴存在t∈[1,2]使(3-4t)(3-t)>kt,
即k<= 4t+-15成立
記h (x) = 4t+-15,則k< h (x)max即可,易得h (x)max=-2
綜上:k<-2.
考點:函數(shù)的最值
點評:解決的管家式利用對數(shù)式的運算,以及函數(shù)的性質,均值不等式來求解最值,屬于中檔題。
科目:高中數(shù)學 來源:2013屆浙江省臨海市白云高級中學高三第三次模擬理科數(shù)學試卷(帶解析) 題型:解答題
已知函數(shù)f (x)=3 sin2 ax+sin ax cos ax+2 cos2 ax的周期為π,其中a>0.
(Ⅰ) 求a的值;
(Ⅱ) 求f (x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年浙江省臨海市高三第三次模擬理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)f (x)=3 sin2 ax+sin ax cos ax+2 cos2 ax的周期為π,其中a>0.
(Ⅰ) 求a的值;
(Ⅱ) 求f (x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年浙江省高三高考模擬測試理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)f (x)=3 sin2 ax+sin ax cos ax+2 cos2 ax的周期為π,其中a>0.
(Ⅰ) 求a的值;
(Ⅱ) 求f (x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源:2012年人教A版高中數(shù)學必修1單調性與最大(小)值練習卷(二)(解析版) 題型:選擇題
已知函數(shù)f(x)=3-2|x|,g(x)=x2-2x,構造函數(shù)F(x),定義如下:當f(x)≥g(x)時,F(xiàn)(x)=g(x);當f(x)<g(x)時,F(xiàn)(x)=f(x),那么F(x)( )
A.有最大值3,最小值-1
B.有最大值3,無最小值
C.有最大值7-,無最小值
D.無最大值,也無最小值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com