(13分)某廠生產(chǎn)某種產(chǎn)品件的總成本(萬元),已知產(chǎn)品單價的平方與產(chǎn)品件數(shù)成反比,生產(chǎn)100件這樣的產(chǎn)品單價為50萬元,產(chǎn)量定為多少時總利潤最大?

解:設(shè)產(chǎn)品的單價P元,據(jù)已知,,

設(shè)利潤為y萬元,則

遞增;遞減,

極大=最大.

答:當(dāng)產(chǎn)量為25萬件

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011屆湖南省瀏陽一中高三第一次月考文科數(shù)學(xué)試卷 題型:解答題

(滿分13分)
某廠準備投資100萬生產(chǎn)A,B兩種新產(chǎn)品,據(jù)測算,投產(chǎn)后的年收益,A產(chǎn)品是總投入的,B產(chǎn)品則是總投入開平方后的2倍.問應(yīng)該怎樣分配投入數(shù),使兩種產(chǎn)品的年總收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆北京市海淀區(qū)高三下學(xué)期期中考試數(shù)學(xué)理卷 題型:解答題

(本小題共13分)
某廠生產(chǎn)的產(chǎn)品在出廠前都要做質(zhì)量檢測,每一件一等品都能通過檢測,每一件二等品通過檢測的概率為.現(xiàn)有10件產(chǎn)品,其中6件是一等品,4件是二等品.
(Ⅰ) 隨機選取1件產(chǎn)品,求能夠通過檢測的概率;
(Ⅱ)隨機選取3件產(chǎn)品,其中一等品的件數(shù)記為,求的分布列;
(Ⅲ)隨機選取3件產(chǎn)品,求這三件產(chǎn)品都不能通過檢測的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省、岳陽縣一中高三11月聯(lián)考文科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

某廠生產(chǎn)某種零件,每個零件的成本為40元,出廠單價定為60元。該廠為鼓勵銷售商訂購,決定當(dāng)一次訂購量超過100個時,每多訂購一個,訂購的全部零件的出廠單價就降低0.02元,但實際出廠單價不低于51元

(1)當(dāng)一次訂購量為多少個時,零件的實際出廠單價恰降為51元?

(2)設(shè)一次訂購量為個,零件的實際出廠單價為元,寫出函數(shù)的表達式;

(3)當(dāng)銷售商一次訂購多少個時,該廠獲得的利潤為6000元?(工廠售出一個零件的利潤=實際出廠單價—成本)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市海淀區(qū)高三下學(xué)期期中考試數(shù)學(xué)理卷 題型:解答題

(本小題共13分)

某廠生產(chǎn)的產(chǎn)品在出廠前都要做質(zhì)量檢測,每一件一等品都能通過檢測,每一件二等品通過檢測的概率為.現(xiàn)有10件產(chǎn)品,其中6件是一等品,4件是二等品.

(Ⅰ) 隨機選取1件產(chǎn)品,求能夠通過檢測的概率;

(Ⅱ)隨機選取3件產(chǎn)品,其中一等品的件數(shù)記為,求的分布列;

(Ⅲ) 隨機選取3件產(chǎn)品,求這三件產(chǎn)品都不能通過檢測的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題共13分)

某廠生產(chǎn)的產(chǎn)品在出廠前都要做質(zhì)量檢測,每一件一等品都能通過檢測,每一件二等品通過檢測的概率為.現(xiàn)有10件產(chǎn)品,其中6件是一等品,4件是二等品.

(Ⅰ) 隨機選取1件產(chǎn)品,求能夠通過檢測的概率;

(Ⅱ)隨機選取3件產(chǎn)品,其中一等品的件數(shù)記為,求的分布列;

(Ⅲ) 隨機選取3件產(chǎn)品,求這三件產(chǎn)品都不能通過檢測的概率.

查看答案和解析>>

同步練習(xí)冊答案