【題目】已知,函數(shù)

1求證:曲線在點處的切線過定點;

2在區(qū)間上的極大值,但不是最大值,求實數(shù)的取值范圍;

3求證:對任意給定的正數(shù) ,總存在,使得上為單調(diào)函數(shù).

【答案】1證明見解析;2;3證明見解析.

【解析】

試題分析:1求出切點坐標(biāo)及切線方程,切線恒過定點即與參數(shù)無關(guān),令系數(shù)為,可得定點坐標(biāo);2,要使成為極大值,因此,又不是最大值,而單增,單減,單增,因此,可求得的范圍;3單增,單減,單增,又,所以要使單調(diào),只需,即,故存在.

試題解析:解:1證明:

,曲線在點處的切線方程為,

,令,則,

故曲線在點處的切線過定點

2解:

在區(qū)間上的極大值,

,得遞增;令,得遞減,

不是在區(qū)間上的最大值,

在區(qū)間上的最大值為

,,又

3證明:,

,得遞增;令,得遞減,

,

上為單調(diào)函數(shù),則,即

故對任意給定的正數(shù),總存在其中,使得上為單調(diào)函數(shù)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱柱的底面是邊長為2的菱形,且,⊥平面,設(shè)的中點

(1)求證:⊥平面;

(2)點在線段平面,求平面和平面所成銳角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)樣本x1,x2,…,x10數(shù)據(jù)的平均值和方差分別為3和5,若yi=xi+a(a為非零實數(shù),i=1,2,…,10),則y1,y2,…,y10的均值和方差分別為( )

A. 3,5 B. 3+a,5 C. 3+a,5+a D. 3,5+a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的短軸長為2,且函數(shù)的圖象與橢圓僅有兩個公共點,過原點的直線與橢圓交于兩點.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)點為線段的中垂線與橢圓的一個公共點,求面積的最小值,并求此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為數(shù)列的前項和,對任意的,都有,數(shù)列滿足, .

(1)求證:數(shù)列是等比數(shù)列,并求的通項公式;

(2)求數(shù)列的通項公式;

(3)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高一年級期末考試的學(xué)生中抽出60名學(xué)生,將其物理成績(均為整數(shù))分成六段, 后畫出如下頻率分布直方圖.觀察圖形的信息,回答下列問題:

Ⅰ)估計這次考試的眾數(shù)m與中位數(shù)n(結(jié)果保留一位小數(shù));

() 估計這次考試的及格率(60分及以上為及格)和平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,設(shè)函數(shù).

1存在使得的最大值,求取值范圍;

2任意成立時,的最大值為1,取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了傳承經(jīng)典,促進學(xué)生課外閱讀,某校從高中年級和初中年級各隨機抽取100名學(xué)生進行有關(guān)對中國四大名著常識了解的競賽.圖1和圖2分別是高中年級和初中年級參加競賽的學(xué)生成績按照分組,得到的頻率分布直方圖.

(1)分別計算參加這次知識競賽的兩個學(xué)段的學(xué)生的平均成績;

(2)規(guī)定競賽成績達到為優(yōu)秀,經(jīng)統(tǒng)計初中年級有3名男同學(xué),2名女同學(xué)達到優(yōu)秀,現(xiàn)從上述5人中任選兩人參加復(fù)試,求選中的2人恰好都為女生的概率;

(3)完成下列的列聯(lián)表,并回答是否有99%的把握認為“兩個學(xué)段的學(xué)生對四大名著的了解有差異”?

附:

臨界值表:

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的年銷售量與該年廣告費用支出有關(guān),現(xiàn)收集了4組觀測數(shù)據(jù)列于下表:

(萬元)

1

4

5

6

(萬元)

30

40

60

50

現(xiàn)確定以廣告費用支出為解釋變量,銷售量為預(yù)報變量對這兩個變量進行統(tǒng)計分析.

(1)已知這兩個變量滿足線性相關(guān)關(guān)系,試建立之間的回歸方程;

(2)假如2017年廣告費用支出為10萬元,請根據(jù)你得到的模型,預(yù)測該年的銷售量.

(線性回歸方程系數(shù)公式).

查看答案和解析>>

同步練習(xí)冊答案