【題目】設(shè)A,B,C,D為平面內(nèi)的四點(diǎn),且A(1,3),B(2,﹣2),C(4,1).
(1)若 = ,求D點(diǎn)的坐標(biāo);
(2)設(shè)向量 = , = ,若k +3 平行,求實(shí)數(shù)k的值.

【答案】
(1)解:設(shè)D(x,y).∵

∴(2,﹣2)﹣(1,3)=(x,y)﹣(4,1),

化為(1,﹣5)=(x﹣4,y﹣1),

,解得 ,

∴D(5,﹣4).


(2)解:∵ =(1,﹣5), = =(4,1)﹣(2,﹣2)=(2,3).

=k(1,﹣5)﹣(2,3)=(k﹣2,﹣5k﹣3), =(1,﹣5)+3(2,3)=(7,4).

∵k +3 平行,

∴7(﹣5k﹣3)﹣4(k﹣2)=0,解得k=


【解析】(1)利用向量相等即可得出;(2)利用向量共線定理即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1求函數(shù)的最小正周期和單調(diào)減區(qū)間;

2已知的三個(gè)內(nèi)角的對(duì)邊分別為,其中,若銳角滿(mǎn)足,且,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)支出x與銷(xiāo)售額y(單位:百萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):

x

2

4

5

6

8

y

30

40

50

60

70



(1)畫(huà)出散點(diǎn)圖;
(2)求線性回歸方程;
(3)預(yù)測(cè)當(dāng)廣告費(fèi)支出為7百萬(wàn)元時(shí)的銷(xiāo)售額.參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知PA與⊙O相切,A為切點(diǎn),PBC為割線,弦CDAP,ADBC相交于E點(diǎn),FCE上一點(diǎn),且DE2EF·EC.

(1)求證:∠P=∠EDF;

(2)求證:CE·EBEF·EP;

(3)若CEBE=3∶2,DE=6,EF=4,求PA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=sin2x+2 cos2x﹣ ,函數(shù)g(x)=mcos(2x﹣ )﹣2m+3(m>0),若存在x1 , x2∈[0, ],使得f(x1)=g(x2)成立,則實(shí)數(shù)m的取值范圍是(
A.(0,1]
B.[1,2]
C.[ ,2]
D.[ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)

平均每天鍛煉
的時(shí)間(分鐘)

[0,10)

[10,20)

[20,30)

[30,40)

[40,50)

[50,60)

總?cè)藬?shù)

20

36

44

50

40

10

將學(xué)生日均課外課外體育運(yùn)動(dòng)時(shí)間在[40,60)上的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面2×2列聯(lián)表,并通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?

課外體育不達(dá)標(biāo)

課外體育達(dá)標(biāo)

合計(jì)

20

110

合計(jì)


(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該校高三學(xué)生中,抽取3名學(xué)生,記被抽取的3名學(xué)生中的“課外體育達(dá)標(biāo)”學(xué)生人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的數(shù)學(xué)期望和方差.
參考公式: ,其中n=a+b+c+d.
參考數(shù)據(jù):

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且橢圓上一點(diǎn)與橢圓左右兩個(gè)焦點(diǎn)構(gòu)成的三角形周長(zhǎng)為.

(1)求橢圓的方程;

(2)如圖,設(shè)點(diǎn)為橢圓上任意一點(diǎn),直線和橢圓交于兩點(diǎn),且直線軸分別交于兩點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知樣本9,10,11,x,y的平均數(shù)是10,標(biāo)準(zhǔn)差是 ,則xy=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若框圖所給的程序運(yùn)行的結(jié)果為S=90,那么判斷框中應(yīng)填入的關(guān)于k的判斷條件是(
A.k<7
B.k<8
C.k<9
D.k<10

查看答案和解析>>

同步練習(xí)冊(cè)答案