【題目】某公司為了了解一年內的用水情況,抽取了10天的用水量如表所示:
天數(shù) | 1 | 1 | 1 | 2 | 2 | 1 | 2 |
用水量/噸 | 22 | 38 | 40 | 41 | 44 | 50 | 95 |
(Ⅰ)在這10天中,該公司用水量的平均數(shù)是多少?每天用水量的中位數(shù)是多少?
(Ⅱ)你認為應該用平均數(shù)和中位數(shù)中的哪一個數(shù)來描述該公司每天的用水量?
【答案】解:(Ⅰ)在這10天中,該公司用水量的平均數(shù)是: = (22+38+40+2×41+2×44+50+2×95)=51(噸).
每天用水量的中位數(shù)是: =42.5(噸).
(Ⅱ)平均數(shù)受數(shù)據(jù)中的極端值(2個95)影響較大,
使平均數(shù)在估計總體時可靠性降低,
10天的用水量有8天都在平均值以下,
故用中位數(shù)描述每天的用水量更合適
【解析】(Ⅰ)利用平均數(shù)、中位數(shù)的定義直接求解.(Ⅱ)平均數(shù)受數(shù)據(jù)中的極端值(2個95)影響較大,使平均數(shù)在估計總體時可靠性降低,用中位數(shù)描述每天的用水量更合適.
科目:高中數(shù)學 來源: 題型:
【題目】給出下列不等式:①x≥ln(x+1)(x>﹣1)② >﹣ +2x﹣ (x>0)③ln >2(x+ )(x∈(0,1))其中成立的個數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= 的圖象過點(0,﹣1).
(1)求實數(shù)a的值;
(2)若f(x)=m+ (m,n是常數(shù)),求實數(shù)m,n的值;
(3)用定義法證明:函數(shù)f(x)在(3,+∞)上是單調減函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= (a是常數(shù),且a>0).對于下列命題:①函數(shù)f(x)的最小值是﹣1;②函數(shù)f(x)在R上是單調函數(shù);③若f(x)>0在[ ,+∞)上恒成立,則a的取值范圍是a>1;④對任意x1<0,x2<0且x1≠x2 , 恒有f( )> .其中正確命題的序號是( )
A.①②
B.①③
C.③④
D.②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一臺機器按不同的轉速生產出來的某機械零件有一些會有缺點,每小時生產有缺點零件的多少,隨機器的運轉的速度而變化,具有線性相關關系,下表為抽樣試驗的結果:
轉速x(轉/秒) | 8 | 10 | 12 | 14 | 16 |
每小時生產有缺點的零件數(shù)y(件) | 5 | 7 | 8 | 9 | 11 |
參考公式: , = = .
(1)如果y對x有線性相關關系,求回歸方程;
(2)若實際生產中,允許每小時生產的產品中有缺點的零件最多有10個,那么機器的運轉速度應控制在設么范圍內?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若f(x)是定義在R上的可導函數(shù),且滿足(x﹣1)f′(x)≥0,則必有( )
A.f(0)+f(2)<2f(1)
B.f(0)+f(2)>2f(1)
C.f(0)+f(2)≤2f(1)
D.f(0)+f(2)≥2f(1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=2n2+n,n∈N* , 數(shù)列{bn}滿足an=4log2bn+3,n∈N* .
(1)求an , bn;
(2)求數(shù)列{anbn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知[x)表示大于x的最小整數(shù),例如[3)=4,[﹣1,3)=﹣1,下列命題中正確的是( ) ①函數(shù)f(x)=[x)﹣x的值域是(0,1]
②若{an}是等差數(shù)列,則{[an)}也是等差數(shù)列
③若{an}是等比數(shù)列,則{[an)}也是等比數(shù)列
④若x∈(1,2017),則方程[x)﹣x=sin x有1007個根.
A.②
B.③④
C.①
D.①④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin( ﹣x)sinx﹣ cos2x. (I)求f(x)的最小正周期和最大值;
(II)討論f(x)在[ , ]上的單調性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com