(本題滿分12分)
已知函數(shù)在點(diǎn)處的切線方程為
⑴求函數(shù)的解析式;
⑵若對于區(qū)間上任意兩個自變量的值都有,求實(shí)數(shù)的最小值;
.⑵的最小值為4.

試題分析:⑴
根據(jù)題意,得解得 所以
⑵令,即.得

因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003944724569.png" style="vertical-align:middle;" />,,所以當(dāng)時,,
則對于區(qū)間上任意兩個自變量的值,都有
,所以
所以的最小值為4.
點(diǎn)評:典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問題,像“恒成立”這類問題,往往要轉(zhuǎn)化成求函數(shù)的最值問題,然后解不等式。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
專家通過研究學(xué)生的學(xué)習(xí)行為,發(fā)現(xiàn)學(xué)生的注意力隨著老師講課時間的變化而變化,講課開始時,學(xué)生的興趣激增,中間有一段時間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散,設(shè)表示學(xué)生注意力隨時間(分鐘)的變化規(guī)律(越大,表明學(xué)生注意力越大),經(jīng)過試驗(yàn)分析得知:
(Ⅰ)講課開始后多少分鐘,學(xué)生的注意力最集中?能堅持多少分鐘?
(Ⅱ)講課開始后5分鐘時與講課開始后25分鐘時比較,何時學(xué)生的注意力更集中?
(Ⅲ)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到180,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生達(dá)到所需的狀態(tài)下講完這道題目?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則                   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共8分)
已知函數(shù)f(x)對任意實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y),且當(dāng)x>0時,f(x)>0,f(-1)=-2,求f(x)在[-2,1]上的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列各組函數(shù)是同一函數(shù)的是(   )
; ②;
;         ④。
A.①②B.①③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)函數(shù),其中表示不超過的最大整數(shù),如.
 (1)求的值;
(2)若在區(qū)間上存在x,使得成立,求實(shí)數(shù)k的取值范圍;
(3)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是定義在R上的函數(shù)且,且,則
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列兩個函數(shù)為相等函數(shù)的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),則函數(shù)的圖象與的圖象關(guān)于直線對稱,則函數(shù)是(   )
A.奇函數(shù)在上單調(diào)遞減B.偶函數(shù)在上單調(diào)遞增
C.奇函數(shù)在上單調(diào)遞減D.偶函數(shù)在上單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊答案