D
分析:
,a
1=3.當(dāng)n≥2時(shí),a
n=S
n-S
n-1=
,所以12a
n=(a
n2+6a
n+9)-(a
n-1+3)
2,整理得(a
n-3)
2-(a
n-1+3)
2=0,解得a
n+a
n-1=0,或a
n-a
n-1-6=0,當(dāng)a
n+a
n-1=0時(shí),
,數(shù)列{a
n}是以a
1=3,公比為-1的等比數(shù)列.當(dāng)a
n-a
n-1-6=0時(shí),a
n-a
n-1=6,數(shù)列{a
n}是以a
1=3,公差為6的等差數(shù)列.
解答:
,
∴a
1=3.
當(dāng)n≥2時(shí),a
n=S
n-S
n-1=
,
∴12a
n=(a
n2+6a
n+9)-(a
n-1+3)
2,
∴(a
n-3)
2-(a
n-1+3)
2=0,
∴[(a
n-3)+(a
n-1+3)][(a
n-3)-(a
n-1+3)]=0,
∴a
n+a
n-1=0,或a
n-a
n-1-6=0,
當(dāng)a
n+a
n-1=0時(shí),
,數(shù)列{a
n}是以a
1=3,公比為-1的等比數(shù)列.
當(dāng)a
n-a
n-1-6=0時(shí),a
n-a
n-1=6,數(shù)列{a
n}是以a
1=3,公差為6的等差數(shù)列.
故選D.
點(diǎn)評:本題考查數(shù)列的綜合應(yīng)用,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,靈活運(yùn)用數(shù)列遞推式,合理地進(jìn)行等價(jià)轉(zhuǎn)化.