在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知cosC+(cosA-sinA)cosB=0.
(1)求角B的大;
(2)若a+c=1,求b的取值范圍.
【答案】分析:(1)已知等式第一項(xiàng)利用誘導(dǎo)公式化簡(jiǎn),第二項(xiàng)利用單項(xiàng)式乘多項(xiàng)式法則計(jì)算,整理后根據(jù)sinA不為0求出tanB的值,由B為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出B的度數(shù);
(2)由余弦定理列出關(guān)系式,變形后將a+c及cosB的值代入表示出b2,根據(jù)a的范圍,利用二次函數(shù)的性質(zhì)求出b2的范圍,即可求出b的范圍.
解答:解:(1)由已知得:-cos(A+B)+cosAcosB-sinAcosB=0,
即sinAsinB-sinAcosB=0,
∵sinA≠0,∴sinB-cosB=0,即tanB=
又B為三角形的內(nèi)角,
則B=
(2)∵a+c=1,即c=1-a,cosB=,
∴由余弦定理得:b2=a2+c2-2ac•cosB,即b2=a2+c2-ac=(a+c)2-3ac=1-3a(1-a)=3(a-2+
∵0<a<1,∴≤b2<1,
≤b<1.
點(diǎn)評(píng):此題考查了余弦定理,二次函數(shù)的性質(zhì),誘導(dǎo)公式,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大;
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案