分析 (1)求出F(0,1),得到拋物線方程,聯(lián)立圓的方程與拋物線方程,求出A的縱坐標(biāo),然后求解|AF|.
(2)設(shè)M(x0,y0),求出切線l:y=$\frac{{x}_{0}}{p}$(x-x0)+y0,通過|ON|=1,求出p=$\frac{2{y}_{0}}{{{y}_{0}}^{2}-1}$且${{y}_{0}}^{2}$-1>0,求出|MN|2的表達(dá)式,利用基本不等式求解最小值以及p的值即可.
解答 解:(1)由題意得F(0,1),從而有C:x2=4y.
解方程組$\left\{\begin{array}{l}{{x}^{2}=4y}\\{{x}^{2}+{y}^{2}=1}\end{array}\right.$,得yA=$\sqrt{5}$-2,所以|AF|=$\sqrt{5}$-1.…(5分)
(2)設(shè)M(x0,y0),則切線l:y=$\frac{x0}{p}$(x-x0)+y0,
整理得x0x-py-py0=0.…(6分)
由|ON|=1得|py0|=$\sqrt{{{x}_{0}}^{2}+{p}^{2}}$=$\sqrt{2p{y}_{0}+{p}^{2}}$,
所以p=$\frac{2{y}_{0}}{{{y}_{0}}^{2}-1}$且${{y}_{0}}^{2}$-1>0,…(8分)
所以|MN|2=|OM|2-1=${{x}_{0}}^{2}$+${{y}_{0}}^{2}$-1=2py0+${{y}_{0}}^{2}$-1
=$\frac{4{{y}_{0}}^{2}}{{{y}_{0}}^{2}-1}$+${{y}_{0}}^{2}$-1=4+$\frac{4}{{{y}_{0}}^{2}-1}$+(${{y}_{0}}^{2}$-1)≥8,當(dāng)且僅當(dāng)y0=$\sqrt{3}$時(shí)等號成立,
所以|MN|的最小值為2$\sqrt{2}$,此時(shí)p=$\sqrt{3}$.…(12分)
點(diǎn)評 本題考查直線與拋物線的位置關(guān)系的應(yīng)用,拋物線方程的求法,拋物線與圓的位置關(guān)系的應(yīng)用,考查計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{1}{2017}$,+∞) | B. | (-2017,+∞) | C. | (-$\frac{2}{3}$,+∞) | D. | (-2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,$\frac{1}{5}$] | B. | [-$\frac{1}{5}$,1] | C. | (-$\frac{1}{5}$,$\frac{1}{3}$] | D. | ($\frac{1}{3}$,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3\sqrt{2}}{2}$ | B. | $\frac{3\sqrt{5}}{5}$ | C. | 3 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com