【題目】有甲、乙兩家公司都需要招聘求職者,這兩家公司的聘用信息如下:
甲公司 | 乙公司 | |||||||||
職位 | A | B | C | D | 職位 | A | B | C | D | |
月薪/元 | 6000 | 7000 | 8000 | 9000 | 月薪/元 | 5000 | 7000 | 9000 | 11000 | |
獲得相應(yīng)職位概率 | 0.4 | 0.3 | 0.2 | 0.1 | 獲得相應(yīng)職位概率 | 0.4 | 0.3 | 0.2 | 0.1 | |
(1)根據(jù)以上信息,如果你是該求職者,你會(huì)選擇哪一家公司?說明理由;
(2)某課外實(shí)習(xí)作業(yè)小組調(diào)查了1000名職場人士,就選擇這兩家公司的意愿做了統(tǒng)計(jì),得到以下數(shù)據(jù)分布:
選擇意愿 人員結(jié)構(gòu) | 40歲以上(含40歲)男性 | 40歲以上(含40歲)女性 | 40歲以下男性 | 40歲以下女性 |
選擇甲公司 | 110 | 120 | 140 | 80 |
選擇乙公司 | 150 | 90 | 200 | 110 |
若分析選擇意愿與年齡這兩個(gè)分類變量,計(jì)算得到的K2的觀測值為k1=5.5513,測得出“選擇意愿與年齡有關(guān)系”的結(jié)論犯錯(cuò)誤的概率的上限是多少?并用統(tǒng)計(jì)學(xué)知識(shí)分析,選擇意愿與年齡變量和性別變量哪一個(gè)關(guān)聯(lián)性更大?
附:
0.050 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
【答案】(1)見解析;(2)見解析
【解析】
(1)分別求出兩家公司的月薪的期望E(X)、E(Y),經(jīng)計(jì)算E(X)=E(Y),再求出兩家公司的月薪的方差,D(X)<D(Y),比較這些數(shù)據(jù)即可作出選擇;(2)由k1=5.5513>5.024,結(jié)合表中對應(yīng)值,可以得出“選擇意愿與年齡有關(guān)系”的結(jié)論的犯錯(cuò)的概率的上限,由題中數(shù)據(jù)可以得到選擇意愿與性別兩個(gè)分類變量的2×2列聯(lián)表,求出對應(yīng)的K2,可得出結(jié)論“選擇意愿與性別有關(guān)”的犯錯(cuò)誤的概率的上限,從而可知選擇意愿與性別關(guān)聯(lián)性更大。
(1)設(shè)甲公司與乙公司的月薪分別為隨機(jī)變量X,Y,
則E(X)=6000×0.4+7000×0.3+8000×0.2+9000×0.1=7000,
E(Y)=5000×0.4+7000×0.3+9000×0.2+11000×0.1=7000,
D(X)=(6000﹣7000)2×0.4+(7000﹣7000)2×0.3+(8000﹣7000)2×0.2+(9000﹣7000)2×0.1=10002,
D(Y)=(5000﹣7000)2×0.4+(7000﹣7000)2×0.3+(9000﹣7000)2×0.2+(11000﹣7000)2×0.1=20002,
則E(X)=E(Y),D(X)<D(Y),
我希望不同職位的月薪差距小一些,故選擇甲公司;
或我希望不同職位的月薪差距大一些,故選擇乙公司;
(2)因?yàn)?/span>k1=5.5513>5.024,根據(jù)表中對應(yīng)值,
得出“選擇意愿與年齡有關(guān)系”的結(jié)論犯錯(cuò)的概率的上限是0.025,
由數(shù)據(jù)分布可得選擇意愿與性別兩個(gè)分類變量的2×2列聯(lián)表如下:
選擇甲公司 | 選擇乙公司 | 總計(jì) | |
男 | 250 | 350 | 600 |
女 | 200 | 200 | 400 |
總計(jì) | 450 | 550 | 1000 |
計(jì)算K2=≈6.734,
且K2=6.734>6.635,
對照臨界值表得出結(jié)論“選擇意愿與性別有關(guān)”的犯錯(cuò)誤的概率上限為0.01,
由0.01<0.025,所以與年齡相比,選擇意愿與性別關(guān)聯(lián)性更大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為考察某種藥物預(yù)防疾病的效果,進(jìn)行動(dòng)物試驗(yàn),調(diào)查了 105 個(gè)樣本,統(tǒng)計(jì)結(jié)果為:服藥的共有 55 個(gè)樣本,服藥但患病的仍有 10 個(gè)樣本,沒有服藥且未患病的有 30個(gè)樣本.
(1)根據(jù)所給樣本數(shù)據(jù)完成 列聯(lián)表中的數(shù)據(jù);
(2)請問能有多大把握認(rèn)為藥物有效?
(參考公式:獨(dú)立性檢驗(yàn)臨界值表
概率 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
患病 | 不患病 | 合計(jì) | |
服藥 | |||
沒服藥 | |||
合計(jì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知分別是的外心、內(nèi)心,與不重合,在的內(nèi)部或邊上,且或者在的內(nèi)部或者,試求出使得等式成立的一個(gè)充要條件(用關(guān)于的內(nèi)角的條件表示)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某工廠生產(chǎn)的某種產(chǎn)品中抽取1000件,測量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻率分布直方圖:
(1)求這1000件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)
(2)由頻率分布直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中以近似為樣本平均數(shù),近似為樣本方差.
(。├迷撜龖B(tài)分布,求;
(ⅱ)某用戶從該工廠購買了100件這種產(chǎn)品,記表示這100件產(chǎn)品中質(zhì)量指標(biāo)值為于區(qū)間(127.6,140)的產(chǎn)品件數(shù),利用(。┑慕Y(jié)果,求.
附:.若,則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的一個(gè)頂點(diǎn)為,且過拋物線的焦點(diǎn)F.
(1)求橢圓C的方程及離心率;
(2)設(shè)點(diǎn)Q是橢圓C上一動(dòng)點(diǎn),試問直線上是否存在點(diǎn)P,使得四邊形PFQB是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(3)若對任意的,,恒有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第35屆牡丹花會(huì)期間,我班有5名學(xué)生參加志愿者服務(wù),服務(wù)場所是王城公園和牡丹公園.
(1)若學(xué)生甲和乙必須在同一個(gè)公園,且甲和丙不能在同一個(gè)公園,則共有多少種不同的分配方案?
(2)每名學(xué)生都被隨機(jī)分配到其中的一個(gè)公園,設(shè)分別表示5名學(xué)生分配到王城公園和牡丹公園的人數(shù),記,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),.
(1)求f(x)的解析式;
(2)設(shè)x∈[1,2]時(shí),函數(shù),是否存在實(shí)數(shù)m使得g(x)的最小值為6,若存在,求m的取值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過樣本點(diǎn)的中心(,)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com