【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為是參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(2)若射線 與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值

【答案】(1) 的極坐標(biāo)方程為.曲線的直角坐標(biāo)方程為. (2)

【解析】

(1)先得到的一般方程,再由極坐標(biāo)化直角坐標(biāo)的公式得到一般方程,將代入得,得到曲線的直角坐標(biāo)方程;(2)設(shè)點的極坐標(biāo)分別為,,

分別代入曲線極坐標(biāo)方程得:,,,之后進行化一,可得到最值,此時,可求解.

(1)由,

代入得:

,故曲線的極坐標(biāo)方程為.

,

代入得,故曲線的直角坐標(biāo)方程為.

(2)設(shè)點、的極坐標(biāo)分別為,

分別代入曲線、極坐標(biāo)方程得:,

,其

為銳角,且滿足,當(dāng)時,取最大值,

此時

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.若直線a,b與平面所成角都是30°,則這兩條直線平行

B.若直線a與平面、平面所成角相等,則

C.若平面內(nèi)不共線三點到平面的距離相等,則

D.已知二面角的平面角為120°,Pl上一定點,則一定存在過點P的平面,使,所成銳二面角都為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),把函數(shù)的圖象向右平移個單位,再把圖象上各點的橫坐標(biāo)縮小到原來的一半,縱坐標(biāo)不變,得到函數(shù)的圖象,當(dāng)時,方程恰有兩個不同的實根,則實數(shù)的取值范圍為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某班學(xué)生喜好體育運動是否與性別有關(guān),對本班60人進行了問卷調(diào)查得到了如下的列聯(lián)表:

喜好體育運動

不喜好體育運動

合計

男生

5

女生

10

合計

60

已知按喜好體育運動與否,采用分層抽樣法抽取容量為12的樣本,則抽到喜好體育運動的人數(shù)為7.

1)請將上面的列聯(lián)表補充完整;

2)能否在犯錯誤的概率不超過0.001的前提下認(rèn)為喜好體育運動與性別有關(guān)?說明你的理由;

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的中心在坐標(biāo)原點,其中一個焦點為圓的圓心,右頂點是圓軸的一個交點.已知橢圓與直線相交于、兩點,延長與橢圓交于點.

1)求橢圓的方程;

2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,底面,,,.

(1)當(dāng)變化時,點到平面的距離是否為定值?若是,請求出該定值;若不是,請說明理由;

(2)當(dāng)直線與平面所成的角為45°時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是平行四邊形,的中點,,.

1)求證:平面

2)若,點在側(cè)棱上,且,二面角的大小為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,判斷函數(shù)的單調(diào)性;

2)若恒成立,求的取值范圍;

3)已知,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項數(shù)列的前項和為,對任意,點都在函數(shù) 的圖象上.

1)求數(shù)列的通項公式;

2)若數(shù)列,求數(shù)列的前項和;

3)已知數(shù)列滿足,若對任意,存在使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案