【題目】已知奇函數(shù)在定義域上單調(diào)遞增,若對(duì)任意的成立,則實(shí)數(shù)的最小值為__________

【答案】

【解析】

由題意利用奇偶性及單調(diào)性將問(wèn)題轉(zhuǎn)化為2cos2x+2cosx1+m≥0對(duì)任意的x∈(﹣,+∞)成立.令gx)=2cos2x+2cosx1,求得gx)的最小值即可.

因?yàn)?/span>fx)在定義域(﹣+∞)上單調(diào)遞增且為奇函數(shù),

所以fcosx+cos2x+fcosx+m≥0對(duì)任意的x∈(﹣+∞)成立cosx+cos2x+cosx+m≥0對(duì)任意的x∈(﹣,+∞)成立.

2cos2x+2cosx1+m≥0對(duì)任意的x∈(﹣+∞)成立.

gx)=2cos2x+2cosx12cosx2,

故當(dāng)cosx時(shí),gxmin

只需即可,∴m

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對(duì)30名六年級(jí)學(xué)生進(jìn)行了問(wèn)卷調(diào)查得到如下列聯(lián)表:平均每天喝500以上為常喝,體重超過(guò)50為肥胖

常喝

不常喝

合計(jì)

肥胖

2

不肥胖

18

合計(jì)

30

已知在全部30人中隨機(jī)抽取1人,抽到肥胖的學(xué)生的概率為

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

(2)是否有的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?說(shuō)明你的理由;

(3)已知常喝碳酸飲料且肥胖的學(xué)生中有2名女生,現(xiàn)從常喝碳酸飲料且肥胖的學(xué)生抽取2人參加電視節(jié)目,則正好抽到一男一女的概率是多少?

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),是實(shí)數(shù)常數(shù))的圖像上的一個(gè)最高點(diǎn)是,與該最高點(diǎn)最近的一個(gè)最低點(diǎn)是.

(1)求函數(shù)的解析式及其單調(diào)遞增區(qū)間;

(2)在中,角所對(duì)的邊分別為,且,角的取值范圍是區(qū)間。當(dāng)時(shí),試求函數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)定義在上的函數(shù)滿(mǎn)足任意都有,時(shí),,的大小關(guān)系是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將邊長(zhǎng)為的正方形沿對(duì)角線(xiàn)折疊,使得平面平面,平面,的中點(diǎn),且

(1)求證:;

(2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于數(shù)列,若存在常數(shù)M,使得對(duì)任意中至少有一個(gè)不小于M,則記作,那么下列命題正確的是( ).

A.,則數(shù)列各項(xiàng)均大于或等于M;

B.,則;

C.,,則;

D.,則;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義域?yàn)?/span>的函數(shù)圖像的兩個(gè)端點(diǎn)為、,向量圖像上任意一點(diǎn),其中,若不等式恒成立,則稱(chēng)函數(shù)上滿(mǎn)足“范圍線(xiàn)性近似”,其中最小正實(shí)數(shù)稱(chēng)為該函數(shù)的線(xiàn)性近似閾值.若函數(shù)定義在上,則該函數(shù)的線(xiàn)性近似閾值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,設(shè)邊,,所對(duì)的角分別為,,已知.

1)求角的大;

2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列的每相鄰兩項(xiàng)之間插入此兩項(xiàng)的和,形成新的數(shù)列,這樣的操作叫做該數(shù)列的一次拓展.如數(shù)列1,2,經(jīng)過(guò)第1次拓展得到數(shù)列1,3,2;經(jīng)過(guò)第2次拓展得到數(shù)列1,4,3,5,2;設(shè)數(shù)列a,bc經(jīng)過(guò)第n次拓展后所得數(shù)列的項(xiàng)數(shù)記為,所有項(xiàng)的和記為

1)求,;

2)若,求n的最小值;

3)是否存在實(shí)數(shù)a,b,c,使得數(shù)列為等比數(shù)列,若存在,求a,bc滿(mǎn)足的條件;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案