【題目】如圖,矩形和菱形所在的平面相互垂直,,,,.
(1)求證:平面;
(2)求二面角的正切值.
【答案】(1)證明見解析;(2).
【解析】
(1)可證平面,從而得到,又可證,從而得到平面.
(2)以為原點,為軸,為軸,為軸,建立空間直角坐標系,求出平面的法向量和面的法向量后計算它們的夾角的余弦值,再結合二面角為鈍角以及同角的三角函數(shù)基本關系式可求二面角的正切值.
(1)證明:∵矩形和菱形所在的平面相互垂直,,
∵矩形菱形,平面, ∴平面.
∵平面,∴,
∵菱形中,
,,,故,
∴由勾股定理得,∴,
∵,∴平面.
(2)由(1)可知,,兩兩垂直,以為原點,為軸,為軸,為軸,建立空間直角坐標系,
由已知,,,,
,,
設平面的法向量,
則,取得.
設平面的法向量,則
,取得
設二面角的平面角為,
則且,所以,
由為鈍角,所以二面角的正切值為.
科目:高中數(shù)學 來源: 題型:
【題目】在正四棱錐中,已知異面直線與所成的角為,給出下面三個命題:
:若,則此四棱錐的側面積為;
:若分別為的中點,則平面;
:若都在球的表面上,則球的表面積是四邊形面積的倍.
在下列命題中,為真命題的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知2a=2bcosC+csinB.
(Ⅰ)求tanB;
(Ⅱ)若C,△ABC的面積為6,求BC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:,過點的直線交于,兩點,過點,分別作的切線,兩切線相交于點.
(1)記直線,的斜率分別為,,證明:為定值;
(2)記的面積為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學某社團為研究高三學生課下鉆研數(shù)學時間與數(shù)學考試中的解答題得分的關系,隨機調查了某中學高三某班名學生每周課下鉆研數(shù)學時間(單位:小時)與高三下學期期中考試數(shù)學解答題得分,數(shù)據如下表:
2 | 4 | 6 | 8 | 10 | 12 | |
30 | 38 | 44 | 48 | 50 | 54 |
(1)根據上述數(shù)據,求出數(shù)學考試中的解答題得分與該學生課下鉆研數(shù)學時間的線性回歸方程,并預測某學生每周課下鉆研數(shù)學時間為小時其數(shù)學考試中的解答題得分;
(2)從這人中任選人,求人中至少有人課下鉆研數(shù)學時間不低于小時的概率.
參考公式:,其中, ;參考數(shù)據:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“地攤經濟”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號,某生產企業(yè)積極響應號召,大力研發(fā)新產品,為了對新研發(fā)的一批產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到一組銷售數(shù)據,如表所示:
試銷單價(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產品銷量(件) | 84 | 83 | 80 | 75 | 68 |
已知,,,
(1)試求,若變量,具有線性相關關系,求產品銷量(件)關于試銷單價(元)的線性回歸方程;
(2)用表示用(1)中所求的線性回歸方程得到的與對應的產品銷量的估計值.當銷售數(shù)據對應的殘差的絕對值時,則將銷售數(shù)據稱為一個“好數(shù)據”.現(xiàn)從6個銷售數(shù)據中任取2個,求恰好2個都是“好數(shù)據”的概率.
(參考公式:線性回歸方程中,的最小二乘估計分別為,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線(為參數(shù)),直線(t為參數(shù)),以原點O為極點,x軸的非負半軸為極軸建立極坐標系
(1)求曲線C與直線l的極坐標方程;
(2)若直線l與曲線C相交,交點為,直線與x軸交于Q點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年是我國打贏脫貧攻堅戰(zhàn)收官之年,為落實“精準扶貧”政策,某扶貧小組為一“對點幫扶”農戶引種了一種新的經濟農作物,并指導該農戶于2020年初開始種植.已知該經濟農作物每年每畝的種植成本為1000元,根據前期各方面調查發(fā)現(xiàn),該經濟農作物的市場價格和畝產量均具有隨機性,且兩者互不影響,其具體情況如下表:
該經濟農作物畝產量 | 900 | 1200 | 該經濟農作物市場價格(元) | 15 | 20 | |
概率 | 概率 |
(1)設2020年該農戶種植該經濟農作物一畝的純收入為元,求的分布列;
(2)若該農戶從2020年開始,連續(xù)三年種植該經濟農作物,假設三年內各方面條件基本不變,求這三年中該農戶種植該經濟農作物一畝至少有兩年的純收入不少于16000元的概率;
(3)2020年全國脫貧標準約為人均純收入4000元.假設該農戶是一個四口之家,且該農戶在2020年的其他方面的支出與收入正好相抵,能否憑這一畝經濟農作物的純收入,預測該農戶在2020年底可以脫貧?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com