已知函數(shù)f(x)的定義域?yàn)镽,且滿足f(x+2)=-f(x)?(1)求證:f(x)是周期函數(shù);(2)若f(x)為奇函數(shù),且當(dāng)0≤x≤1時(shí),f(x)=x,求使f(x)=-在[0,2 009]上的所有x的個(gè)數(shù).

(Ⅰ) 見解析  (Ⅱ) 502


解析:

(1)證明: ∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),

∴f(x)是以4為周期的周期函數(shù).

(2)解: 當(dāng)0≤x≤1時(shí),f(x)=x,設(shè)-1≤x≤0,則0≤-x≤1,∴f(-x)=(-x)=-x.

∵f(x)是奇函數(shù),∴f(-x)=-f(x),∴-f(x)=-x,即f(x)= x.

故f(x)= x(-1≤x≤1) 又設(shè)1<x<3,則-1<x-2<1,

∴f(x-2)=(x-2), 又∵f(x-2)=-f(2-x)=-f((-x)+2)=-[-f(-x)]=-f(x),

∴-f(x)=(x-2),∴f(x)=-(x-2)(1<x<3). 

∴f(x)=由f(x)=-,解得x=-1.

∵f(x)是以4為周期的周期函數(shù).故f(x)=-的所有x=4n-1 (n∈Z).

令0≤4n-1≤2 009,則≤n≤,又∵n∈Z,∴1≤n≤502 (n∈Z),

∴在[0,2 009]上共有502個(gè)x使f(x)=-.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a

(I)如果對(duì)任意x∈[1,2],f′(x)>a2恒成立,求實(shí)數(shù)a的取值范圍;
(II)設(shè)函數(shù)f(x)的兩個(gè)極值點(diǎn)分別為x1,x2判斷下列三個(gè)代數(shù)式:①x1+x2+a,②
x
2
1
+
x
2
2
+a2
,③
x
3
1
+
x
3
2
+a3

中有幾個(gè)為定值?并且是定值請(qǐng)求出;若不是定值,請(qǐng)把不是定值的表示為函數(shù)g(a),并求出g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

問題1:已知函數(shù)f(x)=
x
1+x
,則f(
1
10
)+f(
1
9
)+
+f(
1
2
)+f(1)+f(2)+
…+f(9)+f(10)=
19
2
19
2

我們?nèi)舭衙恳粋(gè)函數(shù)值計(jì)算出,再求和,對(duì)函數(shù)值個(gè)數(shù)較少時(shí)是常用方法,但函數(shù)值個(gè)數(shù)較多時(shí),運(yùn)算就較繁鎖.觀察和式,我們發(fā)現(xiàn)f(
1
2
)+f(2)
、…、f(
1
9
)+f(9)
、f(
1
10
)+f(10)
可一般表示為f(
1
x
)+f(x)
=
1
x
1+
1
x
+
x
1+x
=
1
1+x
+
x
1+x
=
1+x
1+x
=1
為定值,有此規(guī)律從而很方便求和,請(qǐng)求出上述結(jié)果,并用此方法求解下面問題:
問題2:已知函數(shù)f(x)=
1
2x+
2
,求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P是M,N的中點(diǎn).
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
(n∈N*,n≥2),求
lim
n→∞
4Sn-9Sn
4Sn+1+9Sn+1
的值;
(3)在(2)的條件下,若an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+1-a
a-x
(x≠a)

(1)當(dāng)f(x)的定義域?yàn)?span id="1zbxddr" class="MathJye">[a+
1
2
,a+1]時(shí),求f(x)的值域;
(2)試問對(duì)定義域內(nèi)的任意x,f(2a-x)+f(x)的值是否為一個(gè)定值?若是,求出這個(gè)定值;若不是,說明理由;
(3)設(shè)函數(shù)g(x)=x2+|(x-a)f(x)|,若
1
2
≤a≤
3
2
,求g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•嘉定區(qū)一模)(理)已知函數(shù)f(x)=log2
2
x
1-x
,P1(x1,y1)、P2(x2,y2)是f(x)圖象上兩點(diǎn).
(1)若x1+x2=1,求證:y1+y2為定值;
(2)設(shè)Tn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求Tn關(guān)于n的解析式;
(3)對(duì)(2)中的Tn,設(shè)數(shù)列{an}滿足a1=2,當(dāng)n≥2時(shí),an=4Tn+2,問是否存在角a,使不等式(1-
1
a1
)(1-
1
a2
)
(1-
1
an
)<
sinα
2n+1
對(duì)一切n∈N*都成立?若存在,求出角α的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案