已知集合A={x|
2x-1x+3
≥1}
,B={x|(x+a)(x-2a)≤0},其中a>0.
(1)求集合A;
(2)若A∩B=∅,求實數(shù)a的取值范圍.
分析:(1)集合A即{x|
x-4
x+3
≥0},解此分式不等式求得集合A.
(2)由 a>0,求得 B={x|-a≤x≤2a},若A∩B=∅,則有
-a≥-3
2a<4
,由此解得a的取值范圍.
解答:解:(1)集合A={x|
2x-1
x+3
≥1}
={x|
x-4
x+3
≥0}={x|
x+3≠0
(x-4)(x+3)≥0
}={x|x≥4,或 x<-3}.
(2)∵a>0,B={x|(x+a)(x-2a)≤0}={x|-a≤x≤2a},若A∩B=∅,則有
-a≥-3
2a<4
,解得 a<2,
故實數(shù)a的取值范圍為(0,2).
點評:本題主要考查集合關(guān)系中參數(shù)的取值范圍問題,分式不等式的解法,兩個集合的交集的定義和求法,體現(xiàn)了等價轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、已知集合A={x|-2<x<4},B={x|x+m<0}
(1)若A∩B=∅,求實數(shù)m的取值范圍.
( 2 )若A?B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2-a≤x≤2+a},B={x|x2-5x+4≥0},
(1)當(dāng)a=3時,求A∩B,A∪(CRB);
(2)若A∩B=Φ,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1}且B≠∅,若A∪B=A,則m的取值范圍是
(2,4]
(2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2≤x≤6,x∈R},B={x|-1<x<5,x∈R},全集U=R.
(1)求A∩(CUB);
(2)若集合C={x|x<a,x∈R},A∩C=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-2≤x<3},B={x|y=lg(x-1)},那么集合A∩B等于(  )

查看答案和解析>>

同步練習(xí)冊答案