已知圓C1x2+y2=10與圓C2x2+y2+2x+2y-14=0
(1)求證:圓C1與圓C2相交;
(2)求兩圓公共弦所在直線的方程;
(3)求經(jīng)過(guò)兩圓交點(diǎn),且圓心在直線x+y-6=0上的圓的方程.
分析:(1)利用兩圓圓心距與半徑的和、差比較,即可得到結(jié)論;
(2)將兩圓方程相減,可得兩圓公共弦所在直線的方程;
(3)設(shè)出過(guò)兩圓交點(diǎn)的圓系方程,確定圓心坐標(biāo),利用圓心在直線x+y-6=0上,即可求得圓的方程.
解答:(1)證明:圓C2x2+y2+2x+2y-14=0化為標(biāo)準(zhǔn)方程為(x+1)2+(y+1)2=16
∴C2(-1,1),r=4
∵圓C1x2+y2=10的圓心坐標(biāo)為(0,0),半徑為R=
10

∴|C1C2|=
2

∵4-
10
2
<4+
10

∴兩圓相交;
(2)解:將兩圓方程相減,可得2x+2y-4=0,即兩圓公共弦所在直線的方程為x+y-2=0;
(3)解:設(shè)所求圓的方程為x2+y2+2x+2y-14+λ(x2+y2-10)=0(λ≠-1)
即(1+λ)x2+(1+λ)y2+2x+2y-14-10λ=0
∴圓心坐標(biāo)為(-
1
1+λ
,-
1
1+λ

代入直線x+y-6=0可得:-
1
1+λ
-
1
1+λ
-6=0,∴λ=-
4
3

∴所求圓的方程為x2+y2-6x-6y+2=0.
點(diǎn)評(píng):本題考查圓的方程,考查圓與圓的位置關(guān)系,考查圓系方程,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•惠州二模)已知圓C1:x2+y2=2和圓C2,直線l與C1切于點(diǎn)M(1,1),圓C2的圓心在射線2x-y=0(x≥0)上,且C2經(jīng)過(guò)坐標(biāo)原點(diǎn),如C2被l截得弦長(zhǎng)為4
3

(1)求直線l的方程;
(2)求圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1x2+y2=2,直線l與圓C1相切于點(diǎn)A(1,1);圓C2的圓心在直線x+y=0上,且圓C2過(guò)坐標(biāo)原點(diǎn).
(1)求直線l的方程;
(2)若圓C2被直線l截得的弦長(zhǎng)為8,求圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1:x2+(y+5)2=5,設(shè)圓C2為圓C1關(guān)于直線l對(duì)稱(chēng)的圓,則在x軸上是否存在點(diǎn)P,使得P到兩圓的切線長(zhǎng)之比為
2
?薦存在,求出點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•寧波模擬)如圖,已知圓C1x2+(y-1)2=4和拋物線C2:y=x2-1,過(guò)坐標(biāo)原點(diǎn)O的直線與C2相交于點(diǎn)A、B,定點(diǎn)M坐標(biāo)為(0,-1),直線MA,MB分別與C1相交于點(diǎn)D、E.
(1)求證:MA⊥MB.
(2)記△MAB,△MDE的面積分別為S1、S2,若
S1S2
,求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案