【題目】在平面直角坐標(biāo)系中,已知點(diǎn),.

(1)求以線段為鄰邊的平行四邊形的另一頂點(diǎn)的坐標(biāo);

(2)求證:.

【答案】(1)(1,4) (2)詳見解析

【解析】

1)利用向量坐標(biāo)表示,從而得解;

2)利用向量坐標(biāo)表示,證明向量的數(shù)量積為0即可.

(1) 解:法1:∵=(3,5),設(shè)D(xy),則=(x+2,y+1),

,∴D(1,4);

法2:因?yàn)锽、C的中點(diǎn)坐標(biāo)為(0,1),設(shè)D(x,y)

則A、D的中點(diǎn)坐標(biāo)為

因?yàn)槠叫兴倪呅蔚膶?duì)角線互相平分,所以,

解得

D(1,4)

(2)證明: 法1:=(-2,-1),∵(+·+2,

·=3×(-2)+5×(-1)=-11, 2=5

代入上式得(+=0

所以(+)⊥

法2:因?yàn)?/span>=(3,5),=(-2,-1),

所以+=

所以(+·(-2,-1)=0

所以(+)⊥

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A、B、C所對(duì)的邊a、b、c,且
(1)求角A
(2)若 ,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在公比為2的等比數(shù)列{an}中,a2與a3的等差中項(xiàng)是9
(1)求a1的值;
(2)若函數(shù)y=|a1|sin( x+φ),|φ|<π,的一部分圖象如圖所示,M(﹣1,|a1|),N(3,﹣|a1|)為圖象上的兩點(diǎn),設(shè)∠MPN=β,其中P與坐標(biāo)原點(diǎn)O重合,0<β<π,求tan(φ﹣β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣x2﹣ax.
(1)若曲線y=f(x)在點(diǎn)x=0處的切線斜率為1,求函數(shù)f(x)在[0,1]上的最值;
(2)令g(x)=f(x)+ (x2﹣a2),若x≥0時(shí),g(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=0且x>0時(shí),證明f(x)﹣ex≥xlnx﹣x2﹣x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是偶函數(shù).

(1)求實(shí)數(shù)的值;

(2)當(dāng)時(shí),函數(shù)存在零點(diǎn),求實(shí)數(shù)的取值范圍;

(3)設(shè)函數(shù),若函數(shù)的圖像只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖的程序框圖,若運(yùn)行此程序,則輸出S的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校的學(xué)生文娛團(tuán)隊(duì)由理科組和文科組構(gòu)成,具體數(shù)據(jù)如表所示:

組別

文科

理科

性別

男生

女生

男生

女生

人數(shù)

3

1

3

2

學(xué)校準(zhǔn)備從該文娛團(tuán)隊(duì)中選出4人到某社區(qū)參加大型公益活動(dòng)演出,每選出一名男生,給其所在的組記1分;每選出一名女生,給其所在的組記2分,要求被選出的4人中文科組和理科組的學(xué)生都有.
(I)求理科組恰好得4分的概率;
(II)記文科組的得分為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,已知都是邊長(zhǎng)為的等邊三角形,中點(diǎn),且平面,為線段上一動(dòng)點(diǎn),記

(1)當(dāng)時(shí),求異面直線所成角的余弦值;

(2)當(dāng)與平面所成角的正弦值為時(shí),求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)不等式x2+y2≤4確定的平面區(qū)域?yàn)閁,|x|+|y|≤1確定的平面區(qū)域?yàn)閂.
(1)定義橫、縱坐標(biāo)為整數(shù)的點(diǎn)為“整點(diǎn)”,在區(qū)域U內(nèi)任取3個(gè)整點(diǎn),求這些整點(diǎn)中恰有2個(gè)整點(diǎn)在區(qū)域V的概率;
(2)在區(qū)域U內(nèi)任取3個(gè)點(diǎn),記這3個(gè)點(diǎn)在區(qū)域V的個(gè)數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案