分析 (Ⅰ)由已知可得f(x1)=$lo{g}_{a}{a}^{2}$=2,利用等差數(shù)列的通項公式與對數(shù)的運算性質(zhì)即可得出.
(Ⅱ)由(Ⅰ)可得:an=2n,可得$\frac{4}{{a}_{n}{a}_{n+1}}$=$\frac{1}{n}$-$\frac{1}{n+1}$.再利用“裂項求和”方法與數(shù)列的單調(diào)性即可證明.
解答 (Ⅰ)解:∵f(x1)=$lo{g}_{a}{a}^{2}$=2,公差d=2.
∴f(xn)=2+2(n-1)=2n,
∴l(xiāng)ogaxn=2n,解得xn=a2n.
(Ⅱ)證明:由(Ⅰ)可得:an=logaxn=2n,
∴$\frac{4}{{a}_{n}{a}_{n+1}}$=$\frac{4}{2n(2n+2)}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$.
∴$\frac{4}{{a}_{1}{a}_{2}}$+$\frac{4}{{a}_{2}{a}_{3}}$+…+$\frac{4}{{a}_{n}{a}_{n+1}}$=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$<1.
點評 本題考查了等差數(shù)列的通項公式、對數(shù)的運算性質(zhì)、“裂項求和”方法、數(shù)列的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [f(0),f(5)] | B. | [f(0),f($\frac{2}{3}$)] | C. | [c,f(5)] | D. | [f$\frac{2}{3}$),f(5)] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com