在邊長為2的正方形ABCD內(nèi)部任取一點M,則滿足∠AMB>90°的概率為
 
考點:幾何概型
專題:計算題,概率與統(tǒng)計
分析:本題為幾何概型,由題意通過圓和三角形的知識畫出滿足條件的圖形,分別找出滿足條件的點集對應(yīng)的圖形面積,及圖形的總面積,作比值即可.
解答: 解:以AB為直徑圓內(nèi)的區(qū)域為滿足∠AMB>90°的區(qū)域,
半圓的面積為
1
2
π×12=
π
2
;
正方形ABCD的面積為4.
∴滿足∠AMB>90°的概率為
π
8

故答案是
π
8
點評:本題考查幾何概型的概率計算,關(guān)鍵是畫出滿足條件的區(qū)域,利用面積比值求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊方程是AB:5x-y-12=0,BC:x+3y+4=0,CA:x-5y+12=0,
(1)求∠A的大小;
(2)求BC邊上的高所在的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

波波斯基以游戲方式?jīng)Q定是否參加學(xué)校同人社還是學(xué)校芭蕾舞團(tuán),游戲規(guī)則為:以O(shè)為起點(如圖正方體ABCD-EFGH的中心為點O),再從A,B,C,D,E,F(xiàn),G,H這8個頂點中任取兩點為終點分別得到兩個向量,記這兩個向量的數(shù)量積為X,若X>0就參加芭蕾舞團(tuán),否則就參加同人社.
(Ⅰ)求波波參加學(xué)校芭蕾舞社的概率;
(Ⅱ)若分別在左面四個頂點A,D,H,E處放置藍(lán)球,右面四個頂點B,C,G,F(xiàn)處放置紅球,波波斯基在上底面隨機抽取2個球,在下底面隨機抽取3個球,記抽得的紅球個數(shù)為ξ,寫出隨機變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-2x-1=0關(guān)于直線2x-y+3=0對稱的圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2+2cos8
+2
1-sin8
的化簡結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=1,an+1=(-1)n(an+1),{an}的前n項和為Sn,則S2013=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科做)已知一個圓錐的母線長為3,則它的體積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx+2cos2x-1,(x∈R)的最小正周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若θ是任意實數(shù),則方程x2+4y2cosθ=1所表示的曲線一定不是(  )
A、圓B、雙曲線C、直線D、拋物線

查看答案和解析>>

同步練習(xí)冊答案