設(shè)橢圓的左、右焦點(diǎn)分別為,已知橢圓上的任意一點(diǎn),滿足,過(guò)作垂直于橢圓長(zhǎng)軸的弦長(zhǎng)為3.

(1)求橢圓的方程;

(2)若過(guò)的直線交橢圓于兩點(diǎn),求的取值范圍.

 

【答案】

(1)  (2)

【解析】

試題分析:解:(1)設(shè)點(diǎn),則,

,

,又,

,∴橢圓的方程為:

(2)當(dāng)過(guò)直線的斜率不存在時(shí),點(diǎn),則;

當(dāng)過(guò)直線的斜率存在時(shí),設(shè)斜率為,則直線的方程為,設(shè)

   得:

綜合以上情形,得:

考點(diǎn):橢圓的方程、幾何性質(zhì)

點(diǎn)評(píng): 本小題主要考查橢圓的方程、幾何性質(zhì),平面向量的數(shù)量積的坐標(biāo)運(yùn)算,直線與圓錐曲線的位置關(guān)系等基本知識(shí)及推理能力和運(yùn)算能力

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•藍(lán)山縣模擬)設(shè)橢圓C的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,過(guò)點(diǎn)A與AF2垂直的直線交x軸負(fù)半軸于點(diǎn)Q,且2
F1F2
+
F2Q
=
0
.則橢圓C的離心率為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年黑龍江高三上期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,過(guò)點(diǎn)垂直的直線交軸負(fù)半軸于點(diǎn),且

(1)求橢圓的離心率; (2)若過(guò)、三點(diǎn)的圓恰好與直線相切,

求橢圓的方程;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市朝陽(yáng)區(qū)高三上學(xué)期期末理科數(shù)學(xué)卷 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,過(guò)點(diǎn)垂直的直線交軸負(fù)半軸于點(diǎn),且,若過(guò),,三點(diǎn)的圓恰好與直線相切. 過(guò)定點(diǎn)的直線與橢圓交于兩點(diǎn)(點(diǎn)在點(diǎn),之間).

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線的斜率,在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形. 如果存在,求出的取值范圍,如果不存在,請(qǐng)說(shuō)明理由;

(Ⅲ)若實(shí)數(shù)滿足,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆山西省第一學(xué)期高三12月月考文科數(shù)學(xué)試卷 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別是,下頂點(diǎn)為,線段的中點(diǎn)為為坐標(biāo)原點(diǎn)),如圖.若拋物線軸的交點(diǎn)為,且經(jīng)過(guò)點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè),為拋物線上的一動(dòng)點(diǎn),過(guò)點(diǎn)作拋物線的切線交橢圓兩點(diǎn),求面積的最大值.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2010-2011學(xué)年重慶市主城八區(qū)高三第二次學(xué)業(yè)調(diào)研抽測(cè)文科數(shù)學(xué)卷 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別為、,上頂點(diǎn)為,在軸負(fù)半軸上有一點(diǎn),滿足,且

 (Ⅰ)求橢圓的離心率;

(Ⅱ)若過(guò)、三點(diǎn)的圓恰好與直線相切,求橢圓的方程;                       

(Ⅲ)在(Ⅱ)的條件下,過(guò)右焦點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn),

若點(diǎn)使得以為鄰邊的平行四邊形是菱形,求的取值范圍.      

 

查看答案和解析>>

同步練習(xí)冊(cè)答案