【題目】在平面直角坐標(biāo)系中,圓的方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長度,直線的極坐標(biāo)方程為.
(I)當(dāng)時,判斷直線與的關(guān)系;
(II)當(dāng)上有且只有一點到直線的距離等于時,求上到直線距離為的點的坐標(biāo).
【答案】(I)當(dāng)時,直線與相交;(II)和.
【解析】
試題分析:(I)當(dāng)時,直線的極坐標(biāo)方程為,根據(jù)極坐標(biāo)與直角坐標(biāo)互化公式得,圓的直角坐標(biāo)方程為,圓心到直線的距離所以直線與圓相交;(II)分析可知,若圓上只有一點到直線的距離為,則直線與圓位置關(guān)系為相離,且圓心到直線距離為,則問題轉(zhuǎn)化為過圓心且與平行的直線與圓的交點解方程組即可求出點的坐標(biāo).
試題解析:(I)圓的普通方程為:, ……………………………1分
直線的直角坐標(biāo)方程為:, ……………………………2分
圓心(1,1)到直線的距離為, ……………………………4分
所以直線與相交. …………………………… 5分
(II)上有且只有一點到直線的距離等于,即圓心到直線的距離為, ………… 7分
過圓心與平行的直線方程式為:, ……………………………8分
聯(lián)立方程組解得 ……………………………9分
故所求點為(2,0)和(0,2) ……………………………10分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三次函數(shù),
(1)若函數(shù)過點且在點處的切線方程是,求函數(shù)的解析式;
(2)在(1)的條件下,若對于區(qū)間上任意兩個自變量的值,
都有,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市統(tǒng)計局就2015年畢業(yè)大學(xué)生的月收入情況調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖所示,每個分組包括左端點,不包括右端點,如第一組表示.
(1)求畢業(yè)大學(xué)生月收入在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析大學(xué)生的收入與所學(xué)專業(yè)、性別等方面的關(guān)系,必須按月收入再從這10000人中按分層抽樣方法抽出100人作進一步分析,則月收入在的這段應(yīng)抽取多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究“教學(xué)方式”對教學(xué)質(zhì)量的影響,某高中數(shù)學(xué)老師分別用兩種不同的教學(xué)方式對入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進行教學(xué)(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績.
(1)學(xué)校規(guī)定:成績不低于75分的為優(yōu)秀.請畫出下面的列聯(lián)表.
甲班 | 乙班 | 合計 | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計 |
(2)判斷有多大把握認(rèn)為“成績優(yōu)秀與教學(xué)方式有關(guān)”.
下面臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)是奇函數(shù),且滿足f(x)=f(x+3),f(-2)=-3.若數(shù)列{an}中,a1=-1,且前n項和Sn滿足=2×+1,則f(a5)+f(a6)=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的兩個焦點分別為F1(-1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點P.
(1)求橢圓C的離心率;
(2)設(shè)過點A(0,2)的直線l與橢圓C交于M,N兩點,點Q是線段MN上的點,且=+,求點Q的軌跡方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com