A. | (-∞,-2] | B. | [2,+∞) | C. | [-2,2] | D. | (-∞,-2]∪[2,+∞) |
分析 根據(jù)函數(shù)奇偶性的性質(zhì)結(jié)合函數(shù)單調(diào)性進(jìn)行轉(zhuǎn)化求解即可.
解答 解:當(dāng)x≥0時(shí),f(x)=x2+log2(x+1)為增函數(shù),
∵f(x)是偶函數(shù),
∴不等式f(t)≥f(2),等價(jià)為f(|t|)≥f(2),
即|t|≥2,
即t≥或t≤-2,
即t的取值范圍是(-∞,-2]∪[2,+∞),
故選:D.
點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性和單調(diào)性的應(yīng)用,利用奇偶性和單調(diào)性的關(guān)系將不等式進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=sin({x+\frac{π}{6}})$ | B. | $y=sin({x+\frac{π}{3}})$ | C. | $y=sin({2x-\frac{2π}{3}})$ | D. | $y=sin({2x+\frac{π}{3}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分組(重量) | [75,85) | [85,95) | [95,105) | [105,115) |
頻數(shù)(個(gè)) | 15 | 30 | 35 | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | π | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com