1.定義在R上的偶函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=x2+log2(x+1),若f(t)≥f(2),則t的取值范圍是(  )
A.(-∞,-2]B.[2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)

分析 根據(jù)函數(shù)奇偶性的性質(zhì)結(jié)合函數(shù)單調(diào)性進(jìn)行轉(zhuǎn)化求解即可.

解答 解:當(dāng)x≥0時(shí),f(x)=x2+log2(x+1)為增函數(shù),
∵f(x)是偶函數(shù),
∴不等式f(t)≥f(2),等價(jià)為f(|t|)≥f(2),
即|t|≥2,
即t≥或t≤-2,
即t的取值范圍是(-∞,-2]∪[2,+∞),
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性和單調(diào)性的應(yīng)用,利用奇偶性和單調(diào)性的關(guān)系將不等式進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=Asin(ωx+φ)(A、ω>0)的圖象如圖所示,則其解析式可以是( 。
A.$y=sin({x+\frac{π}{6}})$B.$y=sin({x+\frac{π}{3}})$C.$y=sin({2x-\frac{2π}{3}})$D.$y=sin({2x+\frac{π}{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.下列命題
①“等邊三角形的三內(nèi)角均為60°”的逆命題
②若k>0,則方程x2+2x-k=0有實(shí)根“的逆命題
③“全等三角形的面積相等”的否命題
④“若ab≠0,則a≠0”的逆否命題,
其中真命題的個(gè)數(shù)是:2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.$\sqrt{(a-b)^{6}}$(a<b)=(b-a)3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C的中心在坐標(biāo)原點(diǎn),F(xiàn)(1,0)為橢圓C的一個(gè)焦點(diǎn),點(diǎn)P(2,y0)為橢圓C上一點(diǎn),且|PF|=1.
(1)求橢圓C的方程;
(2)若過點(diǎn)M(0,1)的直線l與橢圓C交于不同的兩點(diǎn)A、B,且$\overrightarrow{AM}$=3$\overrightarrow{MB}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.從一批蘋果中隨機(jī)抽取100個(gè)作為樣本,其重量(單位:克)的頻數(shù)分布表如下:
分組(重量)[75,85)[85,95)[95,105)[105,115)
頻數(shù)(個(gè))15303520
(1)在頻率分布直方圖中,求分組重量在[85,95)對(duì)應(yīng)小矩形的高;
(2)利用頻率估計(jì)這批蘋果重量的平均數(shù).
(3)用分層抽樣的方法從重量在[85,95)和[105,115)的蘋果中抽取5個(gè),從這5個(gè)蘋果任取2個(gè),求重量在這兩個(gè)組中各有1個(gè)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lnx,x>1}\\{{x}^{2}-3,x≤1}\end{array}\right.$,若關(guān)于x的方程f(x)=$\frac{a}{x}$恰有兩個(gè)不同解,則實(shí)數(shù)a的取值范圍為[-2,0]∪{2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)扇形的半徑長為2cm,面積為4cm2,則扇形的圓心角的弧度數(shù)是( 。
A.1B.2C.πD.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ax2+xlnx+x.
(1)若a=1,求函數(shù)f(x)在(1,f(1))處的切線方程;
(2))若a=-e,證明:方程$|{f(x)}|-lnx=\frac{1}{2}x$無解.

查看答案和解析>>

同步練習(xí)冊(cè)答案