【題目】如圖,在直三棱柱中,,, 為線段的中點,為線段上一動點(異于點),為線段上一動點,且.

(Ⅰ)求證:平面平面;

(Ⅱ)若,求直線與平面所成角的正弦值.

【答案】(Ⅰ)證明見解析;(Ⅱ).

【解析】

(Ⅰ)要證平面平面,轉(zhuǎn)證平面即證

(Ⅱ)建立如圖空間直角坐標系,求出平面的法向量,代入公式可得結(jié)果.

(I)證明:因為,為線段的中點,

所以

在直三棱柱中,易知平面,

,而

平面,;

又因為;

所以平面,

平面;所以平面平面;

(II)由(I)可建立如圖空間直角坐標系,

因為所以,

,

設(shè),

所以,

因為,,

所以

,

解得:異于點) ,

設(shè)平面 的法向量為 ,則

,可取

設(shè)直線與平面所成角為 ,

,

直線與平面所成角的正弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù)

討論的單調(diào)性;

的極值點,且曲線在兩點 處的切線相互平行,這兩條切線在軸上的截距分別為,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若數(shù)列、滿足 (N*),則稱為數(shù)列的“偏差數(shù)列”.

(1)若為常數(shù)列,且為的“偏差數(shù)列”,試判斷是否一定為等差數(shù)列,并說明理由;

(2)若無窮數(shù)列是各項均為正整數(shù)的等比數(shù)列,且為數(shù)列的“偏差數(shù)列”,求的值;

(3)設(shè),為數(shù)列的“偏差數(shù)列”,,若對任意恒成立,求實數(shù)M的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地因受天氣,春季禁漁等因素影響,政府規(guī)定每年的7月1日以后的100天為當年的捕魚期.某漁業(yè)捕撈隊對噸位為的20艘捕魚船一天的捕魚量進行了統(tǒng)計,如下表所示:

捕魚量(單位:噸)

頻數(shù)

2

7

7

3

1

根據(jù)氣象局統(tǒng)計近20年此地每年100天的捕魚期內(nèi)的晴好天氣情況如下表(捕魚期內(nèi)的每個晴好天氣漁船方可捕魚,非晴好天氣不捕魚):

晴好天氣(單位:天)

頻數(shù)

2

7

6

3

2

(同組數(shù)據(jù)以這組數(shù)據(jù)的中間值作代表)

(Ⅰ)估計漁業(yè)捕撈隊噸位為的漁船一天的捕魚量的平均數(shù);

(Ⅱ)若以(Ⅰ)中確定的平均數(shù)作為上述噸位的捕魚船在晴好天氣捕魚時一天的捕魚量.

①估計一艘上述噸位的捕魚船一年在捕魚期內(nèi)的捕魚總量;

②已知當?shù)佤~價為2萬元/噸,此種捕魚船在捕魚期內(nèi)捕魚時,每天成本為10萬元/艘;若不捕魚,每天成本為2萬元/艘,請依據(jù)往年天氣統(tǒng)計數(shù)據(jù),估計一艘此種捕魚船年利潤不少于1600萬元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)設(shè),若對任意的,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,為橢圓的左、右焦點,過右焦點的直線與橢圓交于兩點,且的周長為.

(Ⅰ)求橢圓的方程;

(Ⅱ)若點A是第一象限內(nèi)橢圓上一點,且在軸上的正投影為右焦點,過點作直線分別交橢圓于兩點,當直線的傾斜角互補時,試問:直線的斜率是否為定值;若是,請求出其定值;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形中,點,,對角線,交于點P.

1)求直線的方程;

2)若點E,F分別在平行四邊形的邊上運動,且,求的取值范圍;

3)試寫出三角形區(qū)域(包括邊界)所滿足的線性約束條件,若在該區(qū)域上任取一點M,使,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

(1),求的取值范圍;

(2),且,證明:。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】受轎車在保修期內(nèi)維修費等因素的影響,企業(yè)生產(chǎn)每輛轎車的利潤與該轎車首次出現(xiàn)故障的時間有關(guān).某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車中各隨機抽取50輛,統(tǒng)計數(shù)據(jù)如下:

品牌

首次出現(xiàn)故

障時間x(年)

0<x≤1

1<x≤2

x>2

0<x≤2

x>2

轎車數(shù)量(輛)

2

3

45

5

45

每輛利潤

(萬元)

1

2

3

1.8

2.9

將頻率視為概率,解答下列問題:

(1)從該廠生產(chǎn)的甲品牌轎車中隨機抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率.

(2)若該廠生產(chǎn)的轎車均能售出,記生產(chǎn)一輛甲品牌轎車的利潤為X1,生產(chǎn)一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列.

(3)該廠預(yù)計今后這兩種品牌轎車銷量相當,由于資金限制,只能生產(chǎn)其中一種品牌的轎車.若從經(jīng)濟效益的角度考慮,你認為應(yīng)生產(chǎn)哪種品牌的轎車?說明理由.

查看答案和解析>>

同步練習冊答案