在△ABC中,B=45°,C=60°,c=1,則最短邊的邊長是(  )
A、
6
3
B、
6
2
C、
1
2
D、
3
2
分析:由B=45°,C=60°可得A=75°從而可得B角最小,根據(jù)大邊對大角可得最短邊是b,利用正弦定理求b即可
解答:解:由B=45°,C=60°可得A=75°,
∵B角最小,∴最短邊是b,
c
sinC
=
b
sinB
可得,b=
csinB
sinC
=
sin45°
sin60°
=
6
3

故選A.
點評:本題主要考查了三角形的內(nèi)角和、大邊對大角、正弦定理等知識的綜合進(jìn)行解三角形,屬于基礎(chǔ)試題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,B=
π
4
,AC=2
5
,cosC=
2
5
5

(1)求sinA;
(2)記BC的中點為D,求中線AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,B=
π
4
,b=2
5
,sinC=
5
5
,求另兩條邊c、a的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,b=4,A=
π
3
,面積S=2
3

(1)求BC邊的長度;   
(2)求值:
sin2(
A
4
+
π
4
)+ccos2B
1
tan
C
2
+tan
C
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鎮(zhèn)江二模)如圖,在△ABC中,B=
π
4
,角A的平分線AD交BC于點D,設(shè)∠BAD=α,sinα=
5
5

(1)求sin∠BAC和sinC;
(2)若
BA
BC
=28
,求AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,B=
π
4
,角A的平分線AD交BC于點D,設(shè)∠BAD=α,sinα=
5
5

(Ⅰ)求sinC;   
(Ⅱ)若
BA
BC
=28
,求AC的長.

查看答案和解析>>

同步練習(xí)冊答案