已知?jiǎng)狱c(diǎn)P到定直線(xiàn)l:x=2
2
的距離與點(diǎn)P到定點(diǎn)F(
2
,0)
之比為
2

(1)求動(dòng)點(diǎn)P的軌跡c的方程;
(2)若點(diǎn)N為軌跡C上任意一點(diǎn)(不在x軸上),過(guò)原點(diǎn)O作直線(xiàn)AB交(1)中軌跡C于點(diǎn)A、B,且直線(xiàn)AN、BN的斜率都存在,分別為k1、k2,問(wèn)k1•k2是否為定值?
(3)若點(diǎn)M為圓O:x2+y2=4上任意一點(diǎn)(不在x軸上),過(guò)M作圓O的切線(xiàn),交直線(xiàn)l于點(diǎn)Q,問(wèn)MF與OQ是否始終保持垂直關(guān)系?
分析:(1)設(shè)出點(diǎn)P,利用兩點(diǎn)間的距離公式分別表示出P到定直線(xiàn)的距離和到點(diǎn)F的距離的比,建立方程求得x和y的關(guān)系式,即P的軌跡方程.
(2)設(shè)出N,A,則B的坐標(biāo)可知,代入圓錐曲線(xiàn)的方程相減后,可求得k1•k2=-
1
2
,證明原式.
(3)設(shè)M(x0,y0),則可表示出切線(xiàn)方程,與x=2
2
聯(lián)立求得Q的坐標(biāo)表達(dá)式,則可分別表示出
OQ
FM
,進(jìn)而利用向量的運(yùn)算法則求得
OQ
FM
結(jié)果為0,判斷出
OQ
FM
解答:解:(1)設(shè)點(diǎn)P(x,y),依題意,有
(x-
2
)2+y2
|x-2
2
|
=
2
2

整理,得
x2
4
+
y2
2
=1

所以動(dòng)點(diǎn)P的軌跡C的方程為
x2
4
+
y2
2
=1


(2)由題意:設(shè)N(x1,y1),A(x2,y2),
則B(-x2,-y2
x12
4
+
y12
2
=1
,
x22
4
+
y22
2
=1

k1•k2=
y1-y2
x1-x2
y1+y2
x1+x2
=
y12-y22
x12-x22

=
2-
1
2
x12-2+
1
2
x22
x12-x22
=-
1
2
為定值.

(3)M(x0,y0),則切線(xiàn)MQ的方程為:xx0+yy0=4
xx0+yy0=4
x=2
2
得Q(2
2
4-2
2
x0
y0
)

FM
=(x0-
2
,y0)
,
OQ
=(2
2
4-2
2
x0
y0
)
FM
OQ

=2
2
x0-4+y0
4-2
2
x0
y0
=0

所以:
FM
OQ
即MF與OQ始終保持垂直關(guān)系
點(diǎn)評(píng):本題主要考查了直線(xiàn)與圓錐曲線(xiàn)的關(guān)系.當(dāng)涉及直線(xiàn)的斜率的時(shí)候,點(diǎn)差法是常用的方法,能把直線(xiàn)的斜率和曲線(xiàn)方程,交點(diǎn)坐標(biāo),交點(diǎn)的中點(diǎn)坐標(biāo)等向聯(lián)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知?jiǎng)狱c(diǎn)P到定直線(xiàn)l:x=2
2
的距離與點(diǎn)P到定點(diǎn)F(
2
,0)
之比為
2

(1)求動(dòng)點(diǎn)P的軌跡c的方程;
(2)若點(diǎn)N為軌跡C上任意一點(diǎn)(不在x軸上),過(guò)原點(diǎn)O作直線(xiàn)AB交(1)中軌跡C于點(diǎn)A、B,且直線(xiàn)AN、BN的斜率都存在,分別為k1、k2,問(wèn)k1•k2是否為定值?
(3)若點(diǎn)M為圓O:x2+y2=4上任意一點(diǎn)(不在x軸上),過(guò)M作圓O的切線(xiàn),交直線(xiàn)l于點(diǎn)Q,問(wèn)MF與OQ是否始終保持垂直關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年度江蘇省連云港市贛榆高級(jí)中學(xué)高三暑期檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

已知?jiǎng)狱c(diǎn)P到定直線(xiàn)l:x=2的距離與點(diǎn)P到定點(diǎn)F之比為
(1)求動(dòng)點(diǎn)P的軌跡c的方程;
(2)若點(diǎn)N為軌跡C上任意一點(diǎn)(不在x軸上),過(guò)原點(diǎn)O作直線(xiàn)AB交(1)中軌跡C于點(diǎn)A、B,且直線(xiàn)AN、BN的斜率都存在,分別為k1、k2,問(wèn)k1•k2是否為定值?
(3)若點(diǎn)M為圓O:x2+y2=4上任意一點(diǎn)(不在x軸上),過(guò)M作圓O的切線(xiàn),交直線(xiàn)l于點(diǎn)Q,問(wèn)MF與OQ是否始終保持垂直關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知?jiǎng)狱c(diǎn)P到定直線(xiàn)l:x=2的距離與點(diǎn)P到定點(diǎn)F之比為
(1)求動(dòng)點(diǎn)P的軌跡c的方程;
(2)若點(diǎn)N為軌跡C上任意一點(diǎn)(不在x軸上),過(guò)原點(diǎn)O作直線(xiàn)AB交(1)中軌跡C于點(diǎn)A、B,且直線(xiàn)AN、BN的斜率都存在,分別為k1、k2,問(wèn)k1•k2是否為定值?
(3)若點(diǎn)M為圓O:x2+y2=4上任意一點(diǎn)(不在x軸上),過(guò)M作圓O的切線(xiàn),交直線(xiàn)l于點(diǎn)Q,問(wèn)MF與OQ是否始終保持垂直關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省無(wú)錫市錫山區(qū)羊尖高級(jí)中學(xué)高考數(shù)學(xué)模擬試卷(數(shù)學(xué))(解析版) 題型:解答題

已知?jiǎng)狱c(diǎn)P到定直線(xiàn)l:x=2的距離與點(diǎn)P到定點(diǎn)F之比為
(1)求動(dòng)點(diǎn)P的軌跡c的方程;
(2)若點(diǎn)N為軌跡C上任意一點(diǎn)(不在x軸上),過(guò)原點(diǎn)O作直線(xiàn)AB交(1)中軌跡C于點(diǎn)A、B,且直線(xiàn)AN、BN的斜率都存在,分別為k1、k2,問(wèn)k1•k2是否為定值?
(3)若點(diǎn)M為圓O:x2+y2=4上任意一點(diǎn)(不在x軸上),過(guò)M作圓O的切線(xiàn),交直線(xiàn)l于點(diǎn)Q,問(wèn)MF與OQ是否始終保持垂直關(guān)系?

查看答案和解析>>

同步練習(xí)冊(cè)答案