已知函數(shù)f(x)=aln(x+1)-x2,在區(qū)間(-1,0)內(nèi)任取兩個(gè)實(shí)數(shù)p,q,且p≠q,若不等式
f(p+1)-f(q+1)
p-q
>1恒成立,則實(shí)數(shù)a的取值范圍為( 。
A、[6,+∞)
B、[4,+∞)
C、[-
1
8
,+∞)
D、[1,+∞)
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:由不等式
f(p+1)-f(q+1)
p-q
>1恒成立,可知函數(shù)圖象上在區(qū)間(0,1)內(nèi)任意兩點(diǎn)連線的斜率大于1,
轉(zhuǎn)化為函數(shù)的導(dǎo)數(shù)大于1在(0,1)內(nèi)恒成立,把原函數(shù)求導(dǎo)后分離參數(shù)a,然后利用二次函數(shù)的單調(diào)性求
y=2x2+3x+1在[0,1]上的最大值,則答案可求.
解答: 解:
f(p+1)-f(q+1)
p-q
表示點(diǎn)(p+1,f(p+1))與點(diǎn)(q+1,f(q+1))連線的斜率,
∵實(shí)數(shù)p,q在區(qū)間(-1,0)內(nèi),故p+1 和q+1在區(qū)間(0,1)內(nèi).
∵不等式
f(p+1)-f(q+1)
p-q
>1恒成立,
∴函數(shù)圖象上在區(qū)間(0,1)內(nèi)任意兩點(diǎn)連線的斜率大于1,
故函數(shù)的導(dǎo)數(shù)大于1在(0,1)內(nèi)恒成立.
由函數(shù)的定義域知,x>-1,
∴f′(x)=
a
x+1
-2x>1在(0,1)內(nèi)恒成立.
即a>2x2+3x+1在(0,1)內(nèi)恒成立.
由于二次函數(shù)y=2x2+3x+1在(0,1)上是單調(diào)增函數(shù),
故x=2時(shí),y=2x2+3x+1在[0,1]上取最大值為6,
∴a≥6.
∴實(shí)數(shù)a的取值范圍為[6,+∞).
故選:A.
點(diǎn)評:本題考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)出的切線方程,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,訓(xùn)練了利用函數(shù)的單調(diào)性求函數(shù)的最值,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈R,符號[x]表示不超過x的最大整數(shù),若函數(shù)f(x)=
[x]
x
-a(x>0)有且僅有2個(gè)零點(diǎn),則a的取值范圍是 ( 。
A、(
1
2
2
3
]
B、[
1
2
,
2
3
]
C、(
2
3
,
3
4
]
D、[
2
3
3
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡
1+cos2α
tan
α
2
-cot
α
2
的結(jié)果為( 。
A、-
1
2
sin2α
B、
1
2
sin2α
C、-2sin2α
D、2sin2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a6=10,S5=5,則a8=( 。
A、18B、15C、16D、17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
1+i
1-i
的模為( 。
A、1
B、2
C、
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
i2+i3+i4
1-i
在復(fù)平面內(nèi)對應(yīng)的點(diǎn)與原點(diǎn)的距離為( 。
A、1
B、
2
2
C、
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U={2,4,6,8},A={4,6},B={2,4,8},則A∩(∁UB)=( 。
A、{6}B、{4,6}
C、{2,6,8}D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2,-1,2),
b
=(-1,3,-3),
c
=(13,6,λ),若向量
a
b
,
c
共面,則λ=( 。
A、2B、3C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2+x+1,求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案