【題目】已知命題p:“函數(shù) 在R上有零點(diǎn)”,命題q:函數(shù)f(x)= 在區(qū)間(1,+∞)內(nèi)是減函數(shù),若p∧q為真命題,則實(shí)數(shù)m的取值范圍為 .
【答案】[ ,1]
【解析】解:函數(shù) 在R上有零點(diǎn), 即﹣ =m2﹣ + 有解,
令g(x)=﹣ ≤﹣ ,
故m2﹣ + ≤﹣ ,
解得: ≤m≤2;
故p為真時(shí):m∈[ ,2];
函數(shù)f(x)= 在區(qū)間(1,+∞)內(nèi)是減函數(shù),
則m≤1,
若p∧q為真命題,則p真q真,
故 ,
所以答案是:[ ,1].
【考點(diǎn)精析】通過靈活運(yùn)用復(fù)合命題的真假,掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=x|x﹣a|.
(1)當(dāng)a=0時(shí),寫出函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)a=1時(shí),討論函數(shù)y=f(x)的奇偶性;
(3)設(shè)a≠0,函數(shù)y=f(x)在(m,n)上既有最大值又有最小值,請分別求出m,n的取值范圍(用a表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F并且經(jīng)過點(diǎn)A(1,﹣2).
(1)求拋物線C的方程;
(2)過F作傾斜角為45°的直線l,交拋物線C于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),求△OMN的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直四棱柱ABCD﹣A1B1C1D1的底面ABCD是菱形,∠ADC=120°,AA1=AB=1,點(diǎn)O1、O分別是上下底菱形對角線的交點(diǎn).
(1)求證:A1O∥平面CB1D1;
(2)求點(diǎn)O到平面CB1D1的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若實(shí)數(shù)a,b,c滿足loga3<logb3<logc3,則下列關(guān)系中不可能成立的( )
A.a<b<c
B.b<a<c
C.c<b<a
D.a<c<b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出一個(gè)如圖所示的程序框圖,若要使輸入的x值與輸出的y值相等,則這樣的x值的個(gè)數(shù)是( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,a1=b1=1,且b3S3=36,b2S2=8(n∈N+).
(1)求an和bn;
(2)若an<an+1 , 求數(shù)列 的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px上一點(diǎn) 到焦點(diǎn)F距離為1,
(1)求拋物線C的方程;
(2)直線l過點(diǎn)(0,2)與拋物線交于M,N兩點(diǎn),若OM⊥ON,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com