20.已知函數(shù)$f(x)=\left\{\begin{array}{l}{3^x}(x≤0)\\{log_2}x(x>0)\end{array}\right.$,則f[f(2)]=0.

分析 直接利用函數(shù)的解析式,求解函數(shù)值即可.

解答 解:函數(shù)$f(x)=\left\{\begin{array}{l}{3^x}(x≤0)\\{log_2}x(x>0)\end{array}\right.$,則f[f(2)]=f(log22)=f(1)=log21=0.
故答案為:0.

點評 本題考查分段函數(shù)的應用,函數(shù)值的求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.已知不等式(x+2)(x+1)<0,的解集為{x|a<x<b},若點A(a,b)在直線mx+ny+1=0上(m,n均為正實數(shù)),則$\frac{1}{m}+\frac{1}{n}$的最小值為3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知棱長為a,各面均為等邊三角形的四面體S-ABC,求它的表面積、體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.判斷下列各函數(shù)的奇偶性
(1)f(x)=|x+2|+|x-2|
(2)$f(x)=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.過點(2,0)且與直線x-2y+2=0平行的直線方程是( 。
A.x-2y+1=0B.2x+y-2=0C.x-2y-2=0D.x+2y-2=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=ax-1(a>0且a≠1)
(1)若函數(shù)y=f(x)的圖象經(jīng)過P(3,9)點,求a的值;
(2)比較$f(lg\frac{1}{100})與f(-1.9)$的大小,并寫出比較過程;
(3)若f(lna)=e2,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知橢圓C1的中心和拋物線C2的頂點都在坐標原點O,C1和C2有公共焦點F,點F在x軸正半軸上,且C1的長軸長、短軸長及點F到直線x=$\frac{{a}^{2}}{c}$的距離成等比數(shù)列.
(Ⅰ)當C2的準線與直線x=$\frac{{a}^{2}}{c}$的距離為15時,求C1及C2的方程;
(Ⅱ)設點F且斜率為1的直線l交C1于P,Q兩點,交C2于M,N兩點.當$|PQ|=\frac{36}{7}$時,求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設$a={2^{\frac{1}{2}}}$,$b={log_{\frac{1}{2}}}2$,c=log24,則( 。
A.a<b<cB.b<c<aC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知集合A={x|x2-2x-8≤0},B={x|2a<x<a+4},全集為R,
(1)當a=1時,求A∪B,A∩(∁RB);
(2)若A∩B=B,求a的取值范圍.

查看答案和解析>>

同步練習冊答案