已知A,B,C為銳角△ABC的三個內(nèi)角,向量
m
=(2-2sinA,cosA+sinA),
n
=(1+sinA,cosA-sinA),且
m
n

(Ⅰ)求A的大;
(Ⅱ)求y=2sin2B+cos(
3
-2B)取最大值時角B的大小.
(Ⅰ)∵
m
n
,
∴(2-2sinA)(1+sinA)+(cosA+sinA)(cosA-sinA)=0
?2(1-sin2A)=sin2A-cos2A
?2cos2A=1-2cos2A
?cos2A=
1
4

∵△ABC是銳角三角形,∴cosA=
1
2
?A=
π
3


(Ⅱ)∵△ABC是銳角三角形,且A=
π
3
,∴
π
6
<B<
π
2

y=2sin2B+cos(
3
-2B)

=1-cos2B-
1
2
cos2B+
3
2
sin2B
=
3
2
sin2B-
3
2
cos2B+1
=
3
sin(2B-
π
3
)+1
當y取最大值時,2B-
π
3
=
π
2
,即B=
5
12
π
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知A,B,C為銳角△ABC的三個內(nèi)角,向量
m
=(2-2sinA,cosA+sinA),
n
=(1+sinA,cosA-sinA),且
m
n

(Ⅰ)求A的大;
(Ⅱ)求y=2sin2B+cos(
3
-2B)取最大值時角B的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A,B,C為銳角△ABC的三個內(nèi)角,向量
m
=(2-2sinA,cosA+sinA)與
n
=(sinA-cosA,1+sinA)共線.
(1)求角A的大小;
(2)求函數(shù)y=2sin2B+cos
C-3B
2
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年湖北省襄樊市高三三月調(diào)考數(shù)學試卷(解析版) 題型:解答題

已知A,B,C為銳角△ABC的三個內(nèi)角,向量=(2-2sinA,cosA+sinA),=(1+sinA,cosA-sinA),且
(Ⅰ)求A的大;
(Ⅱ)求y=2sin2B+cos(-2B)取最大值時角B的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年北京市首師大附中高三大練習數(shù)學試卷10(理科)(解析版) 題型:解答題

已知A,B,C為銳角△ABC的三個內(nèi)角,向量=(2-2sinA,cosA+sinA),=(1+sinA,cosA-sinA),且
(Ⅰ)求A的大。
(Ⅱ)求y=2sin2B+cos(-2B)取最大值時角B的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆吉林省高一上學期期末考試數(shù)學 題型:填空題

已知A、B、C為銳角三角形ABC的三個內(nèi)角,向量p=(1+sinA,1+cosA),

q=(1+sinB,-1-cosB) 則向量 p與q的夾角是_____________

 

查看答案和解析>>

同步練習冊答案