分析 (1)證明BC⊥平面ACE,可得BC⊥EC,從而△BCE為直角三角形;
(2)幾何體C-BDE的體積=幾何體E-BCD的體積,利用體積公式可得結(jié)論.
解答 (1)證明:由題意,AE⊥平面ABD,則AE⊥BC,
∵AB為直徑,∴AC⊥BC,
∵AC∩AE=A,
∴BC⊥平面ACE,
∴BC⊥EC,
∴△BCE為直角三角形;
(2)解:由∠ABD=$\frac{π}{6}$,四邊形ABCD為一個等腰梯形,且BC=1,可得DC=1,∠BCD=120°,
∴S△BCD=$\frac{1}{2}×1×1×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$,
∵AE=AB=2
∴幾何體C-BDE的體積=幾何體E-BCD的體積=$\frac{1}{3}×\frac{\sqrt{3}}{4}×2$=$\frac{\sqrt{3}}{6}$.
點(diǎn)評 本題考查線面垂直的判定,考查幾何體體積的計算,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{10}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [4,8-2$\sqrt{2}$] | B. | [4-2$\sqrt{2}$,8] | C. | [4,8+2$\sqrt{2}$] | D. | [4-2$\sqrt{2}$,8-2$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{15}{2}$ | B. | 15 | ||
C. | 30 | D. | 隨點(diǎn)E、F的改變而改變的值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com