|
(1) |
解析:橢圓C的焦點在x軸上,由橢圓上的點A到F1、F2兩點的距離之和是4,得2a=4,即a=2. 又點A(1, 所以橢圓C的方程為 |
(2) |
設(shè)橢圓C上的動點為K(x1,y1),線段F1K的中點Q(x,y)滿足x= 因此 |
(3) |
類似的性質(zhì)為:若M、N是雙曲線 設(shè)點M的坐標(biāo)為(m,n),則點N的坐標(biāo)為(-m,-n),其中 又設(shè)點P的坐標(biāo)為(x,y),由kPM= 點評:本題主要考查橢圓的基本知識及求動點軌跡方程的常用方法.第(3)問對考生的聯(lián)想、類比、邏輯思維及運算能力都有較高的要求,根據(jù)提供的信息,讓考生通過類比自己找到所證問題,這是高考數(shù)學(xué)命題的方向.應(yīng)引起注意. |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
3 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com