18.已知{an}是首項為1的等比數(shù)列,Sn是其前n項和,若S4=5S2,則log4a3的值為(  )
A.1B.2C.0或1D.0或2

分析 根據(jù)題意和等比數(shù)列的通項公式列出關(guān)于q的方程,通過解方程求得q的值,然后由等比數(shù)列的通項公式求得a3的值,則易求log4a3的值.

解答 解:由題意得,等比數(shù)列{an}中,5S2=S4,a1=1,
所以5(a1+a2)=a1+a2+a3+a4,
即5(1+q)=1+q+q2+q3,
q3+q2-4q-4=0,即(q+1)(q2-4)=0,
解得q=-1或2,
當(dāng)q=2時,a3=4,log4a3=1.
當(dāng)q=-1時,a3=1,log4a3=0.
綜上所述,log4a3的值為1或0.
故選:C.

點評 本題考查等比數(shù)列的通項公式,以及化簡計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}是等差數(shù)列,cn=an+2an+1-an+1an,(n∈N*).
(1)證明數(shù)列{cn}是等差數(shù)列;
(2)如果a1+a3+…+a23=120,a2+a4+…+a24=132-12k,(k為常數(shù)),求數(shù)列{cn}的通項公式;
(3)在(2)的條件下,若數(shù)列{cn}的前n項和為Sn,問是否存在這樣的實數(shù)k,使Sn當(dāng)且僅當(dāng)n=12時取得最小值,若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.給出下列四個命題:
①命題p:?x∈R,sinx≤1.
②當(dāng)a≥1時,不等式|x-4|+|x-3|<a的解集為非空.
③當(dāng)x>1時,有$lnx+\frac{1}{lnx}≥2$.
④設(shè)復(fù)數(shù)z滿足(1-i)$\overline{z}$=2i,則z=-1-i.
其中真命題的序號是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=$\sqrt{1-2log6x}$的定義域為(0,$\sqrt{6}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)U={x∈Z|-3≤x≤3},A={1,2,3},B={-1,0,1},C={-2,0,2}
求:(1)A∪(B∩C);  
(2)A∩∁U(B∪C)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知焦點在y軸上的橢圓E的中心是原點O,離心率為$\frac{{\sqrt{3}}}{2}$,以橢圓E的短軸的兩端點和兩焦點所圍成的四邊形的周長為8,直線l:y=kx+m與y軸交于點M,與橢圓E交于不同兩點A,B.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若$\overrightarrow{AM}=-3\overrightarrow{BM}$,求m2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn滿足$a_{n+1}^2=4{S_n}+4n+1,n∈{N^*}$,且a2,a5,a14恰好是等比數(shù)列{bn}的前三項.記數(shù)列{bn}的前n項和為Tn,若對任意的n∈N*,不等式$({T_n}+\frac{3}{2})•k≥3n-6$恒成立,則實數(shù)k的取值范圍是$[\frac{2}{27},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)滿足$f(x)-2f(\frac{1}{x})=\frac{3}{x^2}$,則f(x)的最大值是( 。
A.-2B.$-2\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.要得到函數(shù)y=cos2x-sin2x的圖象,只需將函數(shù)y=sin2x的圖象( 。
A.向左平移$\frac{π}{2}$個單位長度B.向右平移$\frac{π}{2}$個單位長度
C.向左平移$\frac{π}{4}$個單位長度D.向右平移$\frac{π}{4}$個單位長度

查看答案和解析>>

同步練習(xí)冊答案